Photosynthetic organisms evolved different mechanisms to protect themselves from high irradiances and photodamage. In cyanobacteria, the photoactive Orange Carotenoid-binding Protein (OCP) acts both as a light sensor and quencher of excitation energy. It binds keto-carotenoids and, when photoactivated, interacts with phycobilisomes, thermally dissipating the excitation energy absorbed by the latter, and acting as efficient singlet oxygen quencher. Here, we report the heterologous expression of an OCP2 protein from the thermophilic cyanobacterium Fischerella thermalis (FtOCP2) in the model organism for green algae, Chlamydomonas reinhardtii. Robust expression of FtOCP2 was obtained through a synthetic redesigning strategy for optimized expression of the transgene. FtOCP2 expression was achieved both in UV-mediated mutant 4 strain, previously selected for efficient transgene expression, and in a background strain previously engineered for constitutive expression of an endogenous β-carotene ketolase, normally poorly expressed in this species, resulting into astaxanthin and other ketocarotenoids accumulation. Recombinant FtOCP2 was successfully localized into the chloroplast. Upon purification it was possible to demonstrate the formation of holoproteins with different xanthophylls and ketocarotenoids bound, including astaxanthin. Moreover, isolated ketocarotenoid-binding FtOCP2 holoproteins conserved their photoconversion properties. Carotenoids bound to FtOCP2 were thus maintained in solution even in absence of organic solvent. The synthetic biology approach herein reported could thus be considered as a novel tool for improving the solubility of ketocarotenoids produced in green algae, by binding to water-soluble carotenoids binding proteins.

Heterologous expression of cyanobacterial Orange Carotenoid Protein (OCP2) as a soluble carrier of ketocarotenoids in Chlamydomonas reinhardtii

Pivato, Matteo;Perozeni, Federico;Cazzaniga, Stefano;Ballottari, Matteo
2021-01-01

Abstract

Photosynthetic organisms evolved different mechanisms to protect themselves from high irradiances and photodamage. In cyanobacteria, the photoactive Orange Carotenoid-binding Protein (OCP) acts both as a light sensor and quencher of excitation energy. It binds keto-carotenoids and, when photoactivated, interacts with phycobilisomes, thermally dissipating the excitation energy absorbed by the latter, and acting as efficient singlet oxygen quencher. Here, we report the heterologous expression of an OCP2 protein from the thermophilic cyanobacterium Fischerella thermalis (FtOCP2) in the model organism for green algae, Chlamydomonas reinhardtii. Robust expression of FtOCP2 was obtained through a synthetic redesigning strategy for optimized expression of the transgene. FtOCP2 expression was achieved both in UV-mediated mutant 4 strain, previously selected for efficient transgene expression, and in a background strain previously engineered for constitutive expression of an endogenous β-carotene ketolase, normally poorly expressed in this species, resulting into astaxanthin and other ketocarotenoids accumulation. Recombinant FtOCP2 was successfully localized into the chloroplast. Upon purification it was possible to demonstrate the formation of holoproteins with different xanthophylls and ketocarotenoids bound, including astaxanthin. Moreover, isolated ketocarotenoid-binding FtOCP2 holoproteins conserved their photoconversion properties. Carotenoids bound to FtOCP2 were thus maintained in solution even in absence of organic solvent. The synthetic biology approach herein reported could thus be considered as a novel tool for improving the solubility of ketocarotenoids produced in green algae, by binding to water-soluble carotenoids binding proteins.
2021
Astaxanthin, Ketocarotenoids, Photoprotection, Chlamydomonas, Cyanobacteria, Metabolic engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1039059
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact