In this work, we investigate a probabilistic method for electricity price forecasting, which overcomes traditional ones. We start considering statistical methods for point forecast, comparing their performance in terms of efficiency, accuracy, and reliability, and we then exploit Neural Networks approaches to derive a hybrid model for probabilistic type forecasting. We show that our solution reaches the highest standard both in terms of efficiency and precision by testing its output on German electricity prices data.
Energy Markets Forecasting. From Inferential Statistics to Machine Learning: The German Case
Luca Di Persio
;
2021-01-01
Abstract
In this work, we investigate a probabilistic method for electricity price forecasting, which overcomes traditional ones. We start considering statistical methods for point forecast, comparing their performance in terms of efficiency, accuracy, and reliability, and we then exploit Neural Networks approaches to derive a hybrid model for probabilistic type forecasting. We show that our solution reaches the highest standard both in terms of efficiency and precision by testing its output on German electricity prices data.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
energies-14-00364-v2(1).pdf
accesso aperto
Tipologia:
Versione dell'editore
Licenza:
Dominio pubblico
Dimensione
1.88 MB
Formato
Adobe PDF
|
1.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.