In a recent issue of Biochemical Journal, Brohus et al. (Biochem. J.476, 193-209) investigated the interaction between the ubiquitous intracellular Ca2+-sensor calmodulin (CaM) and peptides that mimic different structural regions of the cardiac ryanodine receptor (RyR2) at different Ca2+ concentrations. For the purpose, a novel bidimensional titration assay based on changes in fluorescence anisotropy was designed. The study identified the CaM domains that selectively bind to a specific CaM-binding domain in RyR2 and demonstrated that the interaction occurs essentially under Ca2+-saturating conditions. This study provides an elegant and experimentally accessible framework for detailed molecular investigations of the emerging life-threatening arrhythmia diseases associated with mutations in the genes encoding CaM. Furthermore, by allowing the measurement of the equilibrium dissociation constant in a protein-protein complex as a function of [Ca2+], the methodology presented by Brohus et al. may have broad applicability to the study of Ca2+ signalling.

Simultaneous detection of reciprocal interactions between calmodulin, Ca2+ and molecular targets: a focus on the calmodulin-RyR2 complex

Dell'Orco, Daniele
2021-01-01

Abstract

In a recent issue of Biochemical Journal, Brohus et al. (Biochem. J.476, 193-209) investigated the interaction between the ubiquitous intracellular Ca2+-sensor calmodulin (CaM) and peptides that mimic different structural regions of the cardiac ryanodine receptor (RyR2) at different Ca2+ concentrations. For the purpose, a novel bidimensional titration assay based on changes in fluorescence anisotropy was designed. The study identified the CaM domains that selectively bind to a specific CaM-binding domain in RyR2 and demonstrated that the interaction occurs essentially under Ca2+-saturating conditions. This study provides an elegant and experimentally accessible framework for detailed molecular investigations of the emerging life-threatening arrhythmia diseases associated with mutations in the genes encoding CaM. Furthermore, by allowing the measurement of the equilibrium dissociation constant in a protein-protein complex as a function of [Ca2+], the methodology presented by Brohus et al. may have broad applicability to the study of Ca2+ signalling.
2021
biochemical techniques & resources
biophysics
molecular bases of health & disease
molecular interactions
signaling
File in questo prodotto:
File Dimensione Formato  
bcj-2020-0818c.pdf

accesso aperto

Descrizione: CC BY 4.0 publisher's version
Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 2.1 MB
Formato Adobe PDF
2.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1036107
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact