Drug tampering practices, with the aim to increase availability of drug delivery and/or enhance drug effects, are accessible on Internet and are practiced by some portion of recreational drug users. Not rarely, recreational misuse may result in toxic and even fatal results. The aim of the present study was to assess the tampering risk of medicaments containing different formulations of an opioid in combination with paracetamol or dexketoprofen, following the procedures reported in dedicated forums on the web. Tablets and suppositories containing codeine, tramadol and oxycodone were extracted following the reported “Cold water extraction”; dextromethorphan was extracted from cough syrup following the procedure reported as “Acid/base extraction” and fentanyl was extracted from transdermal patches according the procedure reported in Internet. The tampered products and opportunely prepared calibrators in water were analysed by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). The separation of the analytes was carried on Agilent ZORBAX Eclipse Plus C18 (RRHT 2.1 mm × 50 mm, 1.8 μm) by the gradient elution of 0.01% formic acid in water and 0.01% formic acid in methanol. Acquisition was by MRM mode considering at least two transitions for compound. Declared recoveries for these home-made extractions claimed to exceed 99% for the opioid and to complete remove paracetamol, often associated to liver toxicity and thus to obtain a “safer” preparation. In this study, the authors demonstrated that rarely the recoveries for the opioid reached 90% and that up to 60% of the paracetamol amount remained in solution. Thus, high risks for health remained both for the potential lethality of the opioid content, but also for the sub-lethal chronic use of these mixtures, which contained still uncontrolled, ignored, but often important amounts of paracetamol.
Internet pseudoscience: Testing opioid containing formulations with tampering potential
Pascali, Jennifer P;Fais, Paolo;Pigaiani, Nicola;Bertol, Elisabetta
2018-01-01
Abstract
Drug tampering practices, with the aim to increase availability of drug delivery and/or enhance drug effects, are accessible on Internet and are practiced by some portion of recreational drug users. Not rarely, recreational misuse may result in toxic and even fatal results. The aim of the present study was to assess the tampering risk of medicaments containing different formulations of an opioid in combination with paracetamol or dexketoprofen, following the procedures reported in dedicated forums on the web. Tablets and suppositories containing codeine, tramadol and oxycodone were extracted following the reported “Cold water extraction”; dextromethorphan was extracted from cough syrup following the procedure reported as “Acid/base extraction” and fentanyl was extracted from transdermal patches according the procedure reported in Internet. The tampered products and opportunely prepared calibrators in water were analysed by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). The separation of the analytes was carried on Agilent ZORBAX Eclipse Plus C18 (RRHT 2.1 mm × 50 mm, 1.8 μm) by the gradient elution of 0.01% formic acid in water and 0.01% formic acid in methanol. Acquisition was by MRM mode considering at least two transitions for compound. Declared recoveries for these home-made extractions claimed to exceed 99% for the opioid and to complete remove paracetamol, often associated to liver toxicity and thus to obtain a “safer” preparation. In this study, the authors demonstrated that rarely the recoveries for the opioid reached 90% and that up to 60% of the paracetamol amount remained in solution. Thus, high risks for health remained both for the potential lethality of the opioid content, but also for the sub-lethal chronic use of these mixtures, which contained still uncontrolled, ignored, but often important amounts of paracetamol.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0731708518301936-main.pdf
non disponibili
Licenza:
Accesso ristretto
Dimensione
778.68 kB
Formato
Adobe PDF
|
778.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.