Human G protein-coupled receptors (hGPCRs) are the most frequent targets of Food and Drug Administration (FDA)-approved drugs. Structural bioinformatics, along with molecular simulation, can support structure-based drug design targeting hGPCRs. In this context, several years ago, we developed a hybrid molecular mechanics (MM)/coarse-grained (CG) approach to predict ligand poses in low-resolution hGPCR models. The approach was based on the GROMOS96 43A1 and PRODRG united-atom force fields for the MM part. Here, we present a new MM/CG implementation using, instead, the Amber 14SB and GAFF all-atom potentials for proteins and ligands, respectively. The new implementation outperforms the previous one, as shown by a variety of applications on models of hGPCR/ligand complexes at different resolutions, and it is also more user-friendly. Thus, it emerges as a useful tool to predict poses in low-resolution models and provides insights into ligand binding similarly to all-atom molecular dynamics, albeit at a lower computational cost.
Ligand Pose Predictions for Human G Protein-Coupled Receptors: Insights from the Amber-Based Hybrid Molecular Mechanics/Coarse-Grained Approach
Giorgetti, Alejandro;
2020-01-01
Abstract
Human G protein-coupled receptors (hGPCRs) are the most frequent targets of Food and Drug Administration (FDA)-approved drugs. Structural bioinformatics, along with molecular simulation, can support structure-based drug design targeting hGPCRs. In this context, several years ago, we developed a hybrid molecular mechanics (MM)/coarse-grained (CG) approach to predict ligand poses in low-resolution hGPCR models. The approach was based on the GROMOS96 43A1 and PRODRG united-atom force fields for the MM part. Here, we present a new MM/CG implementation using, instead, the Amber 14SB and GAFF all-atom potentials for proteins and ligands, respectively. The new implementation outperforms the previous one, as shown by a variety of applications on models of hGPCR/ligand complexes at different resolutions, and it is also more user-friendly. Thus, it emerges as a useful tool to predict poses in low-resolution models and provides insights into ligand binding similarly to all-atom molecular dynamics, albeit at a lower computational cost.File | Dimensione | Formato | |
---|---|---|---|
mmcg_amber.pdf
solo utenti autorizzati
Tipologia:
Versione dell'editore
Licenza:
Accesso ristretto
Dimensione
12.54 MB
Formato
Adobe PDF
|
12.54 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.