Seeking the largest solution to an expression of the form Ax ≤ B is a common task in several domains of engineering and computer science. This largest solution is commonly called quotient. Across domains, the meanings of the binary operation and the preorder are quite different, yet the syntax for computing the largest solution is remarkably similar. This paper is about finding a common framework to reason about quotients. We only assume we operate on a preorder endowed with an abstract monotonic multiplication and an involution. We provide a condition, called admissibility, which guarantees the existence of the quotient, and which yields its closed form. We call preordered heaps those structures satisfying the admissibility condition. We show that many existing theories in computer science are preordered heaps, and we are thus able to derive a quotient for them, subsuming existing solutions when available in the literature. We introduce the concept of sieved heaps to deal with structures which are given over multiple domains of definition. We show that sieved heaps also have well-defined quotients.
The quotient in preorder theories (extended version)
Tiziano Villa;
2020-01-01
Abstract
Seeking the largest solution to an expression of the form Ax ≤ B is a common task in several domains of engineering and computer science. This largest solution is commonly called quotient. Across domains, the meanings of the binary operation and the preorder are quite different, yet the syntax for computing the largest solution is remarkably similar. This paper is about finding a common framework to reason about quotients. We only assume we operate on a preorder endowed with an abstract monotonic multiplication and an involution. We provide a condition, called admissibility, which guarantees the existence of the quotient, and which yields its closed form. We call preordered heaps those structures satisfying the admissibility condition. We show that many existing theories in computer science are preordered heaps, and we are thus able to derive a quotient for them, subsuming existing solutions when available in the literature. We introduce the concept of sieved heaps to deal with structures which are given over multiple domains of definition. We show that sieved heaps also have well-defined quotients.File | Dimensione | Formato | |
---|---|---|---|
EECS-2020-179.pdf
accesso aperto
Licenza:
Dominio pubblico
Dimensione
374.58 kB
Formato
Adobe PDF
|
374.58 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.