Existing approaches for person re-identification have concentrated on either designing the best feature representation or learning optimal matching metrics in a static setting where the number of cameras are fixed in a network. Most approaches have neglected the dynamic and open world nature of the re- identification problem, where one or multiple new cameras may be temporarily on-boarded into an ex- isting system to get additional information or added to expand an existing network. To address such a very practical problem, we propose a novel approach for adapting existing multi-camera re-identification frameworks with limited supervision. First, we formulate a domain perceptive re-identification method based on geodesic flow kernel that can effectively find the best source camera (already installed) to adapt with newly introduced target camera(s), without requiring a very expensive training phase. Second, we introduce a transitive inference algorithm for re-identification that can exploit the information from best source camera to improve the accuracy across other camera pairs in a network of multiple cameras. Third, we develop a target-aware sparse prototype selection strategy for finding an informative subset of source camera data for data-efficient learning in resource constrained environments. Our approach can greatly increase the flexibility and reduce the deployment cost of new cameras in many real-world dy- namic camera networks. Extensive experiments demonstrate that our approach significantly outperforms state-of-the-art unsupervised alternatives whilst being extremely efficient to compute.
Adaptation of Person Re-identification Models for On-boarding New Camera(s)
V. MurinoSupervision
;
2019-01-01
Abstract
Existing approaches for person re-identification have concentrated on either designing the best feature representation or learning optimal matching metrics in a static setting where the number of cameras are fixed in a network. Most approaches have neglected the dynamic and open world nature of the re- identification problem, where one or multiple new cameras may be temporarily on-boarded into an ex- isting system to get additional information or added to expand an existing network. To address such a very practical problem, we propose a novel approach for adapting existing multi-camera re-identification frameworks with limited supervision. First, we formulate a domain perceptive re-identification method based on geodesic flow kernel that can effectively find the best source camera (already installed) to adapt with newly introduced target camera(s), without requiring a very expensive training phase. Second, we introduce a transitive inference algorithm for re-identification that can exploit the information from best source camera to improve the accuracy across other camera pairs in a network of multiple cameras. Third, we develop a target-aware sparse prototype selection strategy for finding an informative subset of source camera data for data-efficient learning in resource constrained environments. Our approach can greatly increase the flexibility and reduce the deployment cost of new cameras in many real-world dy- namic camera networks. Extensive experiments demonstrate that our approach significantly outperforms state-of-the-art unsupervised alternatives whilst being extremely efficient to compute.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0031320319302948-main.pdf
accesso aperto
Tipologia:
Versione dell'editore
Licenza:
Dominio pubblico
Dimensione
2.1 MB
Formato
Adobe PDF
|
2.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.