Back pain is a complex condition that results from multiple factors including sitting issues such as the chair type and spinal sitting posture. The physiological spinal curvature on the sagittal plane represents a typical feature of good body posture. Sitting postures matching the physiological shape of the spine on the sagittal plane during standing are deemed advantageous from a postural point of view. The aim of this study was to validate a novel dynamic stool by comparing trunk posture adaptations on the sagittal plane during dynamic sitting vs. conventional sitting (standard stool) in healthy people. In total, 100 healthy adults were included. Age, sex and body mass index were recorded. Thoracic kyphosis and lumbar lordosis were measured with the IncliMed(R) goniometer during standing posture, conventional sitting posture (standard stool) and dynamic sitting posture (novel dynamic stool). Sitting posture was maintained for 2 min before evaluation. Thoracic kyphosis and lumbar lordosis were significantly different between standing vs. sitting (dynamic and conventional) posture (p < 0.001) and between dynamic vs. conventional sitting posture (p < 0.001). Sitting on the novel dynamic stool tested in this study was shown to provide a greater match of thoracic kyphosis and lumbar lordosis with the physiological spinal curvature on the sagittal plane during standing than conventional sitting.

Trunk posture adaptations during sitting on dynamic stool: a validation study

Alessandro Picelli
;
Nicola Smania
2020-01-01

Abstract

Back pain is a complex condition that results from multiple factors including sitting issues such as the chair type and spinal sitting posture. The physiological spinal curvature on the sagittal plane represents a typical feature of good body posture. Sitting postures matching the physiological shape of the spine on the sagittal plane during standing are deemed advantageous from a postural point of view. The aim of this study was to validate a novel dynamic stool by comparing trunk posture adaptations on the sagittal plane during dynamic sitting vs. conventional sitting (standard stool) in healthy people. In total, 100 healthy adults were included. Age, sex and body mass index were recorded. Thoracic kyphosis and lumbar lordosis were measured with the IncliMed(R) goniometer during standing posture, conventional sitting posture (standard stool) and dynamic sitting posture (novel dynamic stool). Sitting posture was maintained for 2 min before evaluation. Thoracic kyphosis and lumbar lordosis were significantly different between standing vs. sitting (dynamic and conventional) posture (p < 0.001) and between dynamic vs. conventional sitting posture (p < 0.001). Sitting on the novel dynamic stool tested in this study was shown to provide a greater match of thoracic kyphosis and lumbar lordosis with the physiological spinal curvature on the sagittal plane during standing than conventional sitting.
2020
back
ergonomics
posture
sitting
spine
File in questo prodotto:
File Dimensione Formato  
applsci-10-07567-v2.pdf

accesso aperto

Descrizione: CC BY 4.0 publisher's version
Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 760.76 kB
Formato Adobe PDF
760.76 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1031094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact