Patient classification based on clinical and genomic data will further the goal of precision medicine. Interpretability is of particular relevance for models based on genomic data, where sample sizes are relatively small (in the hundreds), increasing overfitting risk netDx is a machine learning method to integrate multi-modal patient data and build a patient classifier. Patient data are converted into networks of patient similarity, which is intuitive to clinicians who also use patient similarity for medical diagnosis. Features passing selection are integrated, and new patients are assigned to the class with the greatest profile similarity. netDx has excellent performance, outperforming most machine-learning methods in binary cancer survival prediction. It handles missing data – a common problem in real-world data – without requiring imputation. netDx also has excellent interpretability, with native support to group genes into pathways for mechanistic insight into predictive features. The netDx Bioconductor package provides multiple workflows for users to build custom patient classifiers. It provides turnkey functions for one-step predictor generation from multi-modal data, including feature selection over multiple train/test data splits.

netDx: Software for building interpretable patient classifiers by multi-'omic data integration using patient similarity networks

Luca Giudice;Rosalba Giugno;
2021-01-01

Abstract

Patient classification based on clinical and genomic data will further the goal of precision medicine. Interpretability is of particular relevance for models based on genomic data, where sample sizes are relatively small (in the hundreds), increasing overfitting risk netDx is a machine learning method to integrate multi-modal patient data and build a patient classifier. Patient data are converted into networks of patient similarity, which is intuitive to clinicians who also use patient similarity for medical diagnosis. Features passing selection are integrated, and new patients are assigned to the class with the greatest profile similarity. netDx has excellent performance, outperforming most machine-learning methods in binary cancer survival prediction. It handles missing data – a common problem in real-world data – without requiring imputation. netDx also has excellent interpretability, with native support to group genes into pathways for mechanistic insight into predictive features. The netDx Bioconductor package provides multiple workflows for users to build custom patient classifiers. It provides turnkey functions for one-step predictor generation from multi-modal data, including feature selection over multiple train/test data splits.
2021
Network mining, Ai algorithms, patients classifier
File in questo prodotto:
File Dimensione Formato  
2021-netDx-Software-for-building-interpretable-patient-classifiers-by-multiomic-data-integration-using-patient-similarity-networks-version-2-peer-review-2-approvedF1000Research.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 5.32 MB
Formato Adobe PDF
5.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1031085
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact