In 1994, it was conjectured by Fan and Raspaud that every simple bridgeless cubic graph has three perfect matchings whose intersection is empty. In this paper we answer a question recently proposed by Mkrtchyan and Vardanyan, by giving an equivalent formulation of the Fan-Raspaud Conjecture. We also study a possibly weaker conjecture originally proposed by the first author, which states that in every simple bridgeless cubic graph there exist two perfect matchings such that the complement of their union is a bipartite graph. Here, we show that this conjecture can be equivalently stated using a variant of Petersen-colourings, we prove it for graphs having oddness at most four and we give a natural extension to bridgeless cubic multigraphs and to certain cubic graphs having bridges.
An equivalent formulation of the Fan-Raspaud Conjecture and related problems
Mazzuoccolo, G
;
2020-01-01
Abstract
In 1994, it was conjectured by Fan and Raspaud that every simple bridgeless cubic graph has three perfect matchings whose intersection is empty. In this paper we answer a question recently proposed by Mkrtchyan and Vardanyan, by giving an equivalent formulation of the Fan-Raspaud Conjecture. We also study a possibly weaker conjecture originally proposed by the first author, which states that in every simple bridgeless cubic graph there exist two perfect matchings such that the complement of their union is a bipartite graph. Here, we show that this conjecture can be equivalently stated using a variant of Petersen-colourings, we prove it for graphs having oddness at most four and we give a natural extension to bridgeless cubic multigraphs and to certain cubic graphs having bridges.File | Dimensione | Formato | |
---|---|---|---|
Paper.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Accesso ristretto
Dimensione
326.68 kB
Formato
Adobe PDF
|
326.68 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.