Background: Cannabis use has been associated with psychosis through exposure to delta-9-tetrahydrocannabinol (Δ9-THC), its key psychoactive ingredient. Although preclinical and human evidence suggests that Δ9-THC acutely modulates glial function and hypothalamic-pituitary-adrenal (HPA) axis activity, whether differential sensitivity to the acute psychotomimetic effects of Δ9-THC is associated with differential effects of Δ9-THC on glial function and HPA-axis response has never been tested. Methods: A double-blind, randomized, placebo-controlled, crossover study investigated whether sensitivity to the psychotomimetic effects of Δ9-THC moderates the acute effects of a single Δ9-THC dose (1.19 mg/2 ml) on myo-inositol levels, a surrogate marker of glia, in the Anterior Cingulate Cortex (ACC), and circadian cortisol levels, the key neuroendocrine marker of the HPA-axis, in a set of 16 healthy participants (seven males) with modest previous cannabis exposure. Results: The Δ9-THC-induced change in ACC myo-inositol levels differed significantly between those sensitive to (Δ9-THC minus placebo; M = -0.251, s.d. = 1.242) and those not sensitive (M = 1.615, s.d. = 1.753) to the psychotomimetic effects of the drug (t(14) = 2.459, p = 0.028). Further, the Δ9-THC-induced change in cortisol levels over the study period (baseline minus 2.5 h post-drug injection) differed significantly between those sensitive to (Δ9-THC minus placebo; M = -275.4, s.d. = 207.519) and those not sensitive (M = 74.2, s.d. = 209.281) to the psychotomimetic effects of the drug (t(13) = 3.068, p = 0.009). Specifically, Δ9-THC exposure lowered ACC myo-inositol levels and disrupted the physiological diurnal cortisol decrease only in those subjects developing transient psychosis-like symptoms. Conclusions: The interindividual differences in transient psychosis-like effects of Δ9-THC are the result of its differential impact on glial function and stress response.

Differential sensitivity to the acute psychotomimetic effects of delta-9-tetrahydrocannabinol associated with its differential acute effects on glial function and cortisol

Colizzi, Marco;
2022-01-01

Abstract

Background: Cannabis use has been associated with psychosis through exposure to delta-9-tetrahydrocannabinol (Δ9-THC), its key psychoactive ingredient. Although preclinical and human evidence suggests that Δ9-THC acutely modulates glial function and hypothalamic-pituitary-adrenal (HPA) axis activity, whether differential sensitivity to the acute psychotomimetic effects of Δ9-THC is associated with differential effects of Δ9-THC on glial function and HPA-axis response has never been tested. Methods: A double-blind, randomized, placebo-controlled, crossover study investigated whether sensitivity to the psychotomimetic effects of Δ9-THC moderates the acute effects of a single Δ9-THC dose (1.19 mg/2 ml) on myo-inositol levels, a surrogate marker of glia, in the Anterior Cingulate Cortex (ACC), and circadian cortisol levels, the key neuroendocrine marker of the HPA-axis, in a set of 16 healthy participants (seven males) with modest previous cannabis exposure. Results: The Δ9-THC-induced change in ACC myo-inositol levels differed significantly between those sensitive to (Δ9-THC minus placebo; M = -0.251, s.d. = 1.242) and those not sensitive (M = 1.615, s.d. = 1.753) to the psychotomimetic effects of the drug (t(14) = 2.459, p = 0.028). Further, the Δ9-THC-induced change in cortisol levels over the study period (baseline minus 2.5 h post-drug injection) differed significantly between those sensitive to (Δ9-THC minus placebo; M = -275.4, s.d. = 207.519) and those not sensitive (M = 74.2, s.d. = 209.281) to the psychotomimetic effects of the drug (t(13) = 3.068, p = 0.009). Specifically, Δ9-THC exposure lowered ACC myo-inositol levels and disrupted the physiological diurnal cortisol decrease only in those subjects developing transient psychosis-like symptoms. Conclusions: The interindividual differences in transient psychosis-like effects of Δ9-THC are the result of its differential impact on glial function and stress response.
2022
Cannabis
cortisol
magnetic resonance spectroscopy
myo-inositol
psychosis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1028167
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 5
social impact