We provide a mean-field description for a leader-follower dynamics with mass transfer among the two populations. This model allows the transition from followers to leaders and vice versa, with scalar-valued transition rates depending nonlinearly on the global state of the system at each time. We first prove the existence and uniqueness of solutions for the leader-follower dynamics, under suitable assumptions. We then establish, for an appropriate choice of the initial datum, the equivalence of the system with a PDE-ODE system, that consists of a continuity equation over the state space and an ODE for the transition from leader to follower or vice versa. We further introduce a stochastic process approximating the PDE, together with a jump process that models the switch between the two populations. Using a propagation of chaos argument, we show that the particle system generated by these two processes converges in probability to a solution of the PDE-ODE system. Finally, several numerical simulations of social interactions dynamics modeled by our system are discussed.
Leader formation with mean-field birth and death models
Giacomo Albi
;
2019-01-01
Abstract
We provide a mean-field description for a leader-follower dynamics with mass transfer among the two populations. This model allows the transition from followers to leaders and vice versa, with scalar-valued transition rates depending nonlinearly on the global state of the system at each time. We first prove the existence and uniqueness of solutions for the leader-follower dynamics, under suitable assumptions. We then establish, for an appropriate choice of the initial datum, the equivalence of the system with a PDE-ODE system, that consists of a continuity equation over the state space and an ODE for the transition from leader to follower or vice versa. We further introduce a stochastic process approximating the PDE, together with a jump process that models the switch between the two populations. Using a propagation of chaos argument, we show that the particle system generated by these two processes converges in probability to a solution of the PDE-ODE system. Finally, several numerical simulations of social interactions dynamics modeled by our system are discussed.File | Dimensione | Formato | |
---|---|---|---|
leadermf_preprint.pdf
accesso aperto
Descrizione: articolo preprint
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.