Measuring biomarkers (e.g. volatile organic compounds [VOCs]) in exhaled breath is an attractive approach to monitor airway inflammation in asthma and other lung diseases. Olfactive technology by electronic nose (e-Nose) has been applied to identify VOCs in exhaled breath. We compared e-Nose respiratory patterns in a pediatric cohort with asthma classificate children with different asthma control. This cross-sectional study involved 38 children: 28 with asthma and 10 healthy controls . The asthmatic patients were categorized as having controlled (AC), partially controlled (APC) or uncontrolled asthma (ANC) based on level of asthma symptom control according to Global Initiative for Asthma (GINA). Clinical exams, exhaled breath collection for generating e-Nose VOC profiles, and spirometry were performed. Exhaled breath samples were obtained using a commercial electronic nose (Cyranose 320; Smith Detections, Pasadena, CA, USA). The discriminative ability of breathprints were investigated by principal component analysis and penalized logistic regression. The e-Nose was able to discriminate between the CON (controls) + AC and the ANC + APC group with an area under the curve [AUC] of 0.85 (95% confidence interval [CI] 0.72 to 0.98) and a cross-validated AUC of 0.80 (95% CI 0.70 to 0.85). Sensitivity and specificity calculated using the Youden index were 0.79 and 0.84, respectively. Exhaled biomarker patterns were easy to obtain with the device and were able to differentiate children with uncontrolled symptomatic asthma from asymptomatic controls.

Electronic nose in discrimination of children with uncontrolled asthma

Tenero, Laura;Piazza, Michele;Zaffanello, Marco;Piacentini, Giorgio
2020

Abstract

Measuring biomarkers (e.g. volatile organic compounds [VOCs]) in exhaled breath is an attractive approach to monitor airway inflammation in asthma and other lung diseases. Olfactive technology by electronic nose (e-Nose) has been applied to identify VOCs in exhaled breath. We compared e-Nose respiratory patterns in a pediatric cohort with asthma classificate children with different asthma control. This cross-sectional study involved 38 children: 28 with asthma and 10 healthy controls . The asthmatic patients were categorized as having controlled (AC), partially controlled (APC) or uncontrolled asthma (ANC) based on level of asthma symptom control according to Global Initiative for Asthma (GINA). Clinical exams, exhaled breath collection for generating e-Nose VOC profiles, and spirometry were performed. Exhaled breath samples were obtained using a commercial electronic nose (Cyranose 320; Smith Detections, Pasadena, CA, USA). The discriminative ability of breathprints were investigated by principal component analysis and penalized logistic regression. The e-Nose was able to discriminate between the CON (controls) + AC and the ANC + APC group with an area under the curve [AUC] of 0.85 (95% confidence interval [CI] 0.72 to 0.98) and a cross-validated AUC of 0.80 (95% CI 0.70 to 0.85). Sensitivity and specificity calculated using the Youden index were 0.79 and 0.84, respectively. Exhaled biomarker patterns were easy to obtain with the device and were able to differentiate children with uncontrolled symptomatic asthma from asymptomatic controls.
E-nose
volatile organic compounds
children
asthma
Area Under Curve
Asthma
Biomarkers
Breath Tests
Case-Control Studies
Child
Female
Forced Expiratory Volume
Humans
Male
Principal Component Analysis
Volatile Organic Compounds
Electronic Nose
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1027347
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact