A label-free localized surface plasmon resonance (LSPR)-based biosensor exploiting gold nanorods (ONRs) is proposed and demonstrated. For this aim, 35 +/- 5 nm long and 20 +/- 4 thick GNRs spaced by a few nanometers thick polyelectrolytes (PE) from a gold thin film was analyzed and synthesized. The morphology of the GNRs, the plasmon properties of GNRs, swelling of PE layers and the wettability of the surfaces were characterized by transmission and scanning electron microscopy, spectroscopic reflectivity and contact angle measurements, respectively. Indeed, when immersed in a phosphate buffer saline solution, the GNRs-PE-gold system shows an optical shift of the LSPR wavelength. This shift was found to correspond to a vertical swelling of about 2 nm, demonstrating the extreme sensitivity of the biosensor. Finally, we show that LSPR measurements can be used to detect dynamic resonance changes in response to both thickness and buffer solution, while the hydrophobic behavior of the surface can be exploited for reducing the number of liquid analytes in clinical biosensing application. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Label-free biomechanical nanosensor based on LSPR for biological applications

Fiammengo, R.;
2020

Abstract

A label-free localized surface plasmon resonance (LSPR)-based biosensor exploiting gold nanorods (ONRs) is proposed and demonstrated. For this aim, 35 +/- 5 nm long and 20 +/- 4 thick GNRs spaced by a few nanometers thick polyelectrolytes (PE) from a gold thin film was analyzed and synthesized. The morphology of the GNRs, the plasmon properties of GNRs, swelling of PE layers and the wettability of the surfaces were characterized by transmission and scanning electron microscopy, spectroscopic reflectivity and contact angle measurements, respectively. Indeed, when immersed in a phosphate buffer saline solution, the GNRs-PE-gold system shows an optical shift of the LSPR wavelength. This shift was found to correspond to a vertical swelling of about 2 nm, demonstrating the extreme sensitivity of the biosensor. Finally, we show that LSPR measurements can be used to detect dynamic resonance changes in response to both thickness and buffer solution, while the hydrophobic behavior of the surface can be exploited for reducing the number of liquid analytes in clinical biosensing application. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
SURFACE-PLASMON RESONANCE
NANOPARTICLE
NANORODS
File in questo prodotto:
File Dimensione Formato  
Salbini 2020 Opt Mater Exp.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso ristretto
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1025850
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact