An impressive body of literature in the past 20 years has revealed a possible role played by cortical motor areas in action perception. One question that has been of interest is whether these areas are selectively tuned to process the actions of biological agents. However, no experiments directly testing the effects of the main characteristics identifying a biological agent (physical appearance and movement kinematics) on corticospinal excitability (CS) are present in literature. To fill this gap, we delivered single-pulse transcranial magnetic stimulation to the primary motor cortex and we recorded motor evoked potentials from contralateral hand muscles during observation of point-light-displays stimuli representing a hand having lost its physical appearance (Experiment 1) and kinematics characteristics (Experiment 2). Results showed that physical appearance, natural kinematics, and the possibility to identify the action behind the stimulus are not necessary conditions to modulate CS excitability during stimuli observation. We propose that the involvement of the motor system can be mandatory whenever the perceived movement, executed by a human, by an animal or by an object, is recognized as reproducible in its final outcome (e.g., position in space, direction of movement, posture of a body part, to-be-produced sound, specific interaction with an object, etc.), and that the peculiar relationship existing between others' actions and the actions executed by the observer could just represent the extreme in which the motor system is able to almost perfectly reproduce the observed stimulus as it unfolds and, consequently, contribute to stimulus perception in the most efficient way. (C) 2016 Elsevier Ltd. All rights reserved.

Resonating with the ghost of a hand: a TMS experiment

Mele, Sonia
2016-01-01

Abstract

An impressive body of literature in the past 20 years has revealed a possible role played by cortical motor areas in action perception. One question that has been of interest is whether these areas are selectively tuned to process the actions of biological agents. However, no experiments directly testing the effects of the main characteristics identifying a biological agent (physical appearance and movement kinematics) on corticospinal excitability (CS) are present in literature. To fill this gap, we delivered single-pulse transcranial magnetic stimulation to the primary motor cortex and we recorded motor evoked potentials from contralateral hand muscles during observation of point-light-displays stimuli representing a hand having lost its physical appearance (Experiment 1) and kinematics characteristics (Experiment 2). Results showed that physical appearance, natural kinematics, and the possibility to identify the action behind the stimulus are not necessary conditions to modulate CS excitability during stimuli observation. We propose that the involvement of the motor system can be mandatory whenever the perceived movement, executed by a human, by an animal or by an object, is recognized as reproducible in its final outcome (e.g., position in space, direction of movement, posture of a body part, to-be-produced sound, specific interaction with an object, etc.), and that the peculiar relationship existing between others' actions and the actions executed by the observer could just represent the extreme in which the motor system is able to almost perfectly reproduce the observed stimulus as it unfolds and, consequently, contribute to stimulus perception in the most efficient way. (C) 2016 Elsevier Ltd. All rights reserved.
2016
Action observation
Biological motion
Point-light-displays
Premotor cortex
Transcranial magnetic stimulation
File in questo prodotto:
File Dimensione Formato  
craighero jacono mele 2016.pdf

solo utenti autorizzati

Descrizione: CC BY-NC-ND 4.0 post print version
Tipologia: Documento in Post-print
Licenza: Accesso ristretto
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1025130
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact