For a field K, let R denote the Jacobson algebra K⟨X,Y | XY = 1⟩. We give an explicit construction of the injective envelope of each of the (infinitely many) simple left R-modules. Consequently, we obtain an explicit description of a minimal injective cogenerator for R. Our approach involves realizing R up to isomorphism as the Leavitt path K-algebra of an appropriate graph T , which thereby allows us to utilize important machinery developed for that class of algebras.
Injective modules over the Jacobson algebra $Klangle X, Y | XY=1rangle $
Abrams, Gene;Mantese, Francesca;
2021-01-01
Abstract
For a field K, let R denote the Jacobson algebra K⟨X,Y | XY = 1⟩. We give an explicit construction of the injective envelope of each of the (infinitely many) simple left R-modules. Consequently, we obtain an explicit description of a minimal injective cogenerator for R. Our approach involves realizing R up to isomorphism as the Leavitt path K-algebra of an appropriate graph T , which thereby allows us to utilize important machinery developed for that class of algebras.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
InjectivemodulesoverJacobsonalgebraAbramsManteseTonoloforCanJMathJan2020.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
Accesso ristretto
Dimensione
354.33 kB
Formato
Adobe PDF
|
354.33 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.