For a field K, let R denote the Jacobson algebra K⟨X,Y | XY = 1⟩. We give an explicit construction of the injective envelope of each of the (infinitely many) simple left R-modules. Consequently, we obtain an explicit description of a minimal injective cogenerator for R. Our approach involves realizing R up to isomorphism as the Leavitt path K-algebra of an appropriate graph T , which thereby allows us to utilize important machinery developed for that class of algebras.

Injective modules over the Jacobson algebra $Klangle X, Y | XY=1rangle $

Abrams, Gene;Mantese, Francesca;
2021-01-01

Abstract

For a field K, let R denote the Jacobson algebra K⟨X,Y | XY = 1⟩. We give an explicit construction of the injective envelope of each of the (infinitely many) simple left R-modules. Consequently, we obtain an explicit description of a minimal injective cogenerator for R. Our approach involves realizing R up to isomorphism as the Leavitt path K-algebra of an appropriate graph T , which thereby allows us to utilize important machinery developed for that class of algebras.
2021
injective modules over Leavitt path algebras
File in questo prodotto:
File Dimensione Formato  
InjectivemodulesoverJacobsonalgebraAbramsManteseTonoloforCanJMathJan2020.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Accesso ristretto
Dimensione 354.33 kB
Formato Adobe PDF
354.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1023840
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact