Next-generation sequencing (NGS) allows sequencing of a high number of nucleotides in a short time frame at an affordable cost. While this technology has been widely implemented, there are no recommendations from scientific societies about its use in oncology practice. The European Society for Medical Oncology (ESMO) is proposing three levels of recommendations for the use of NGS. Based on the current evidence, ESMO recommends routine use of NGS on tumour samples in advanced non-squamous non-small-cell lung cancer (NSCLC), prostate cancers, ovarian cancers and cholangiocarcinoma. In these tumours, large multigene panels could be used if they add acceptable extra cost compared with small panels. In colon cancers, NGS could be an alternative to PCR. In addition, based on the KN158 trial and considering that patients with endometrial and small-cell lung cancers should have broad access to anti-programmed cell death 1 (anti-PD1) antibodies, it is recommended to test tumour mutational burden (TMB) in cervical cancers, well- and moderately-differentiated neuroendocrine tumours, salivary cancers, thyroid cancers and vulvar cancers, as TMB-high predicted response to pembrolizumab in these cancers. Outside the indications of multigene panels, and considering that the use of large panels of genes could lead to few clinically meaningful responders, ESMO acknowledges that a patient and a doctor could decide together to order a large panel of genes, pending no extra cost for the public health care system and if the patient is informed about the low likelihood of benefit. ESMO recommends that the use of off-label drugs matched to genomics is done only if an access programme and a procedure of decision has been developed at the national or regional level. Finally, ESMO recommends that clinical research centres develop multigene sequencing as a tool to screen patients eligible for clinical trials and to accelerate drug development, and prospectively capture the data that could further inform how to optimise the use of this technology.

Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group

Scarpa, A;
2020-01-01

Abstract

Next-generation sequencing (NGS) allows sequencing of a high number of nucleotides in a short time frame at an affordable cost. While this technology has been widely implemented, there are no recommendations from scientific societies about its use in oncology practice. The European Society for Medical Oncology (ESMO) is proposing three levels of recommendations for the use of NGS. Based on the current evidence, ESMO recommends routine use of NGS on tumour samples in advanced non-squamous non-small-cell lung cancer (NSCLC), prostate cancers, ovarian cancers and cholangiocarcinoma. In these tumours, large multigene panels could be used if they add acceptable extra cost compared with small panels. In colon cancers, NGS could be an alternative to PCR. In addition, based on the KN158 trial and considering that patients with endometrial and small-cell lung cancers should have broad access to anti-programmed cell death 1 (anti-PD1) antibodies, it is recommended to test tumour mutational burden (TMB) in cervical cancers, well- and moderately-differentiated neuroendocrine tumours, salivary cancers, thyroid cancers and vulvar cancers, as TMB-high predicted response to pembrolizumab in these cancers. Outside the indications of multigene panels, and considering that the use of large panels of genes could lead to few clinically meaningful responders, ESMO acknowledges that a patient and a doctor could decide together to order a large panel of genes, pending no extra cost for the public health care system and if the patient is informed about the low likelihood of benefit. ESMO recommends that the use of off-label drugs matched to genomics is done only if an access programme and a procedure of decision has been developed at the national or regional level. Finally, ESMO recommends that clinical research centres develop multigene sequencing as a tool to screen patients eligible for clinical trials and to accelerate drug development, and prospectively capture the data that could further inform how to optimise the use of this technology.
2020
Next-generation sequencing (NGS); genomic alterations; metastatic cancers
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1023727
Citazioni
  • ???jsp.display-item.citation.pmc??? 247
  • Scopus 727
  • ???jsp.display-item.citation.isi??? 683
social impact