Gliomas represent over 70% of all brain tumors, they are highly invasive and structurally vascular neoplasms. Despite the latest technological advance in neuro-surgery the survival of patients with high-grade glioma remains poor. The lack of robust treatment options has propelled the search for new markers that may able allow the identification of patients who can benefit from molecularly targeted therapies. The Hippo signaling pathway is considered as a key regulator of tissue homeostasis, cell proliferation and apoptosis, and alterations of this pathway seem to contribute to tumorigenesis. Yes-associated protein (YAP1) is a downstream target of the Hippo pathway which acts as a transcription co-activator. In cancer, YAP1 has been reported to function either as an oncogene or tumor suppressor, depending on the cell context. The aim of this study was to examine the expression of YAP1, Survivin and LATS1 kinase activity in human astroglial tumors with different grades of malignancy. Moreover, we also investigated the expression of miR-221 and miR-10b and their relationship with core molecules of the Hippo pathway. Our results showed the overexpression of YAP1 and Survivin as well as a decreased activity of large tumor suppressor 1 (LATS1) in high-grade glioblastoma versus anaplastic astrocytoma and low-grade glioma. Furthermore, we also demonstrated that miR-221 and miR-10b are specifically involved in Hippo signaling via LATS1 regulation and that their knockdown significantly decreased glioma cell proliferation. This preliminary data confirmed the crucial role of the Hippo pathway in cancer and suggested that miR-221 and miR-10b could be potential therapeutic targets for glioma treatment.

microRNA-10 and -221 modulate differential expression of Hippo signaling pathway in human astroglial tumors

Barresi, Valeria;
2020-01-01

Abstract

Gliomas represent over 70% of all brain tumors, they are highly invasive and structurally vascular neoplasms. Despite the latest technological advance in neuro-surgery the survival of patients with high-grade glioma remains poor. The lack of robust treatment options has propelled the search for new markers that may able allow the identification of patients who can benefit from molecularly targeted therapies. The Hippo signaling pathway is considered as a key regulator of tissue homeostasis, cell proliferation and apoptosis, and alterations of this pathway seem to contribute to tumorigenesis. Yes-associated protein (YAP1) is a downstream target of the Hippo pathway which acts as a transcription co-activator. In cancer, YAP1 has been reported to function either as an oncogene or tumor suppressor, depending on the cell context. The aim of this study was to examine the expression of YAP1, Survivin and LATS1 kinase activity in human astroglial tumors with different grades of malignancy. Moreover, we also investigated the expression of miR-221 and miR-10b and their relationship with core molecules of the Hippo pathway. Our results showed the overexpression of YAP1 and Survivin as well as a decreased activity of large tumor suppressor 1 (LATS1) in high-grade glioblastoma versus anaplastic astrocytoma and low-grade glioma. Furthermore, we also demonstrated that miR-221 and miR-10b are specifically involved in Hippo signaling via LATS1 regulation and that their knockdown significantly decreased glioma cell proliferation. This preliminary data confirmed the crucial role of the Hippo pathway in cancer and suggested that miR-221 and miR-10b could be potential therapeutic targets for glioma treatment.
2020
Glioma; LATS1; MicroRNA; Survivin; YAP1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1023429
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact