A prefix normal word is a binary word with the property that no substring has more 1s than the prefix of the same length. By proving that the set of prefix normal words is a bubble language, we can exhaustively list all prefix normal words of length n as a combinatorial Gray code, where successive strings differ by at most two swaps or bit flips. This Gray code can be generated in O(log2 n) amortized time per word, while the best generation algorithm hitherto has O(n) running time per word. We also present a membership tester for prefix normal words, as well as a novel characterization of bubble languages.
Generating a Gray code for prefix normal words in amortized polylogarithmic time per word
Zsuzsanna Lipták;
2020-01-01
Abstract
A prefix normal word is a binary word with the property that no substring has more 1s than the prefix of the same length. By proving that the set of prefix normal words is a bubble language, we can exhaustively list all prefix normal words of length n as a combinatorial Gray code, where successive strings differ by at most two swaps or bit flips. This Gray code can be generated in O(log2 n) amortized time per word, while the best generation algorithm hitherto has O(n) running time per word. We also present a membership tester for prefix normal words, as well as a novel characterization of bubble languages.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0304397520304217-main.pdf
solo utenti autorizzati
Tipologia:
Versione dell'editore
Licenza:
Copyright dell'editore
Dimensione
459.94 kB
Formato
Adobe PDF
|
459.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.