This paper offers a novel contribution to the literature on marginal emission factors by proposing a robust empirical methodology for their estimation across both time and space. Our ARIMA model with time-effects not only outperforms the established models in the economics literature but it also proves more reliable than variations adopted in the field of engineering. Utilising half-hourly data on carbon emissions and generation in Great Britain, the results allow us to identify a more stable path of MEFs than obtained with existing methodologies. We also estimate marginal emission effects over subsequent time periods (intra-day), rather than focussing only on individual settlement periods (inter-day). This allows us to evaluate the annual cycle of emissions as a result of changes in the economic and social activity which drives demand. Moreover, the reliability of our approach is further confirmed upon exploring the cross-country context. Indeed, our methodology proves reliable when applied to the case of Italy, which is characterised by a different data generation process. Crucially, we provide a more robust basis for valuing actual carbon emission reductions, especially in electricity systems with high penetration of intermittent renewable technologies.

Where did the time (series) go? Estimation of marginal emission factors with autoregressive components

Giulietti Monica;Grossi Luigi;
2020-01-01

Abstract

This paper offers a novel contribution to the literature on marginal emission factors by proposing a robust empirical methodology for their estimation across both time and space. Our ARIMA model with time-effects not only outperforms the established models in the economics literature but it also proves more reliable than variations adopted in the field of engineering. Utilising half-hourly data on carbon emissions and generation in Great Britain, the results allow us to identify a more stable path of MEFs than obtained with existing methodologies. We also estimate marginal emission effects over subsequent time periods (intra-day), rather than focussing only on individual settlement periods (inter-day). This allows us to evaluate the annual cycle of emissions as a result of changes in the economic and social activity which drives demand. Moreover, the reliability of our approach is further confirmed upon exploring the cross-country context. Indeed, our methodology proves reliable when applied to the case of Italy, which is characterised by a different data generation process. Crucially, we provide a more robust basis for valuing actual carbon emission reductions, especially in electricity systems with high penetration of intermittent renewable technologies.
2020
electricity generation
marginal emission factors
time series analysis
regulation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1022735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact