Radioisotopes production for PET radiopharmaceuticals is performed using cyclotrons resulting in radio activation of different cyclotron components. It is thus necessary to measure the level of radiation exposure and, if possible, to image the areas where most of the radiations are emitted in particular during maintenance or decommissioning procedures. In this work we present a novel optical imaging approach using Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI). CLI was performed by placing a glass Cerenkov radiator on a target window (Havar foils) and RLI data were obtained by covering the Havar foils with an intensifying screen. CLI or RLI were acquired using a small animal optical imaging system used in bioluminescence mode without the use of any optical filters. The analysis of the normalized radiance line profiles of both CLI and RLI images showed a similar pattern, however the absolute radiance of the RLI signal is several order of magnitude higher with respect to CLI. We conclude that optical imaging with CLI and RLI can be considered a novel method to detect and image activation areas in irradiated samples from a medical cyclotron.

Optical imaging of irradiated cyclotron target window foils using Cerenkov and radioluminescence imaging

Boschi, F;
2017-01-01

Abstract

Radioisotopes production for PET radiopharmaceuticals is performed using cyclotrons resulting in radio activation of different cyclotron components. It is thus necessary to measure the level of radiation exposure and, if possible, to image the areas where most of the radiations are emitted in particular during maintenance or decommissioning procedures. In this work we present a novel optical imaging approach using Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI). CLI was performed by placing a glass Cerenkov radiator on a target window (Havar foils) and RLI data were obtained by covering the Havar foils with an intensifying screen. CLI or RLI were acquired using a small animal optical imaging system used in bioluminescence mode without the use of any optical filters. The analysis of the normalized radiance line profiles of both CLI and RLI images showed a similar pattern, however the absolute radiance of the RLI signal is several order of magnitude higher with respect to CLI. We conclude that optical imaging with CLI and RLI can be considered a novel method to detect and image activation areas in irradiated samples from a medical cyclotron.
2017
Cherenkov and transition radiation
Optics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1022729
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact