A simple general theorem is used as a tool that generates nonlocal constants of motion for Lagrangian systems. We review some cases where the constants that we find are useful in the study of the systems: the homogeneous potentials of degree −2, the mechanical systems with viscous fluid resistance and the conservative and dissipative Maxwell-Bloch equations of laser dynam- ics. We also prove a new result on explosion in the past for mechanical system with hydraulic (quadratic) fluid resistance and bounded potential.
Titolo: | Lagrangian dynamics by nonlocal constants of motion |
Autori: | |
Data di pubblicazione: | 2020 |
Rivista: | |
Handle: | http://hdl.handle.net/11562/1021519 |
Appare nelle tipologie: | 01.01 Articolo in Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.