We consider minimising p-harmonic maps from three-dimensional domains to the real projective plane, for 1<<2. These maps arise as least-energy configurations in variational models for nematic liquid crystals. We show that the singular set of such a map decomposes into a 1-dimensional set, which can be physically interpreted as a non-orientable line defect, and a locally finite set, i.e. a collection of point defects.

Improved Partial Regularity for Manifold-Constrained Minimisers of Subquadratic Energies

Canevari, Giacomo
;
Orlandi, Giandomenico
2020-01-01

Abstract

We consider minimising p-harmonic maps from three-dimensional domains to the real projective plane, for 1<<2. These maps arise as least-energy configurations in variational models for nematic liquid crystals. We show that the singular set of such a map decomposes into a 1-dimensional set, which can be physically interpreted as a non-orientable line defect, and a locally finite set, i.e. a collection of point defects.
2020
Landau-de Gennes, subquadratic growth, p-harmonic maps, Hausdorff dimension, flat chains
File in questo prodotto:
File Dimensione Formato  
Canevari,Orlandi_CIMP.pdf

solo utenti autorizzati

Tipologia: Versione dell'editore
Licenza: Accesso ristretto
Dimensione 358.1 kB
Formato Adobe PDF
358.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1019056
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact