We consider minimising p-harmonic maps from three-dimensional domains to the real projective plane, for 1<<2. These maps arise as least-energy configurations in variational models for nematic liquid crystals. We show that the singular set of such a map decomposes into a 1-dimensional set, which can be physically interpreted as a non-orientable line defect, and a locally finite set, i.e. a collection of point defects.
Improved Partial Regularity for Manifold-Constrained Minimisers of Subquadratic Energies
Canevari, Giacomo
;Orlandi, Giandomenico
2020-01-01
Abstract
We consider minimising p-harmonic maps from three-dimensional domains to the real projective plane, for 1<<2. These maps arise as least-energy configurations in variational models for nematic liquid crystals. We show that the singular set of such a map decomposes into a 1-dimensional set, which can be physically interpreted as a non-orientable line defect, and a locally finite set, i.e. a collection of point defects.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Canevari,Orlandi_CIMP.pdf
solo utenti autorizzati
Tipologia:
Versione dell'editore
Licenza:
Accesso ristretto
Dimensione
358.1 kB
Formato
Adobe PDF
|
358.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.