Let N be a smooth, compact, connected Riemannian manifold without boundary. Let E be the Riemannian universal covering of N. For any bounded, smooth domain Omega and any u in BV(Omega, N), we show that u has a lifting v in BV(Omega, E). Our result proves a conjecture by Bethuel and Chiron.
Lifting for manifold-valued maps of bounded variation
Canevari, Giacomo
;Orlandi, Giandomenico
2020-01-01
Abstract
Let N be a smooth, compact, connected Riemannian manifold without boundary. Let E be the Riemannian universal covering of N. For any bounded, smooth domain Omega and any u in BV(Omega, N), we show that u has a lifting v in BV(Omega, E). Our result proves a conjecture by Bethuel and Chiron.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Canevari,Orlandi-JFA.pdf
solo utenti autorizzati
Tipologia:
Versione dell'editore
Licenza:
Accesso ristretto
Dimensione
421.88 kB
Formato
Adobe PDF
|
421.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.