Let N be a smooth, compact, connected Riemannian manifold without boundary. Let E be the Riemannian universal covering of N. For any bounded, smooth domain Omega and any u in BV(Omega, N), we show that u has a lifting v in BV(Omega, E). Our result proves a conjecture by Bethuel and Chiron.

Lifting for manifold-valued maps of bounded variation

Canevari, Giacomo
;
Orlandi, Giandomenico
2020-01-01

Abstract

Let N be a smooth, compact, connected Riemannian manifold without boundary. Let E be the Riemannian universal covering of N. For any bounded, smooth domain Omega and any u in BV(Omega, N), we show that u has a lifting v in BV(Omega, E). Our result proves a conjecture by Bethuel and Chiron.
2020
Manifold-valued maps, Bounded variation, Lifting problem
File in questo prodotto:
File Dimensione Formato  
Canevari,Orlandi-JFA.pdf

solo utenti autorizzati

Tipologia: Versione dell'editore
Licenza: Accesso ristretto
Dimensione 421.88 kB
Formato Adobe PDF
421.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1019055
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact