Available evidence shows that human cortical neurons’ and astrocytes’ calcium-sensing receptors (CaSRs) bind Amyloid-beta (Aβ) oligomers triggering the overproduction/oversecretion of several Alzheimer’s disease (AD) neurotoxinseffects calcilytics suppress. We asked whether AβCaSR signaling might also play a direct pro-neuroinflammatory role in AD. Cortical nontumorigenic adult human astrocytes (NAHAs) in vitro were untreated (controls) or treated with Aβ25-35±NPS 2143 (a calcilytic) and any proinflammatory agent in their protein lysates and growth media assayed via antibody arrays, enzyme-linked immunosorbent assays (ELISAs), and immunoblots. Results show Aβ•CaSR signaling upregulated the synthesis and release/shedding of proinflammatory interleukin (IL)-6, intercellular adhesion molecule-1 (ICAM-1) (holoprotein and soluble [s] fragment), Regulated upon Activation, normal T cell Expressed and presumably Secreted (RANTES), and monocyte chemotactic protein (MCP)-2. Adding NPS 2143 (i) totally suppressed IL-6′s oversecretion while remarkably reducing the other agents’ over-release; and (ii) more effectively than Aβ alone increased over controls the four agents’ distinctive intracellular accumulation. Conversely, NPS 2143 did not alter Aβ-induced surges in IL-1β, IL-3, IL-8, and IL-16 secretion, consequently revealing their Aβ•CaSR signaling-independence. Finally, Aβ25-35±NPS 2143 treatments left unchanged MCP-1′s and TIMP-2′s basal expression. Thus, NAHAs Aβ•CaSR signaling drove four proinflammatory agents’ over-release that NPS 2143 curtailed. Therefore, calcilytics would also abate NAHAs’ Aβ•CaSR signaling direct impact on AD’s neuroinflammation.

CaSR Antagonist (Calcilytic) NPS 2143 Hinders the Release of Neuroinflammatory IL-6, Soluble ICAM-1, RANTES, and MCP-2 from Aβ-Exposed Human Cortical Astrocytes

Chiarini, Anna
;
Armato, Ubaldo;Hu, Peng;Dal Prà, Ilaria
2020

Abstract

Available evidence shows that human cortical neurons’ and astrocytes’ calcium-sensing receptors (CaSRs) bind Amyloid-beta (Aβ) oligomers triggering the overproduction/oversecretion of several Alzheimer’s disease (AD) neurotoxinseffects calcilytics suppress. We asked whether AβCaSR signaling might also play a direct pro-neuroinflammatory role in AD. Cortical nontumorigenic adult human astrocytes (NAHAs) in vitro were untreated (controls) or treated with Aβ25-35±NPS 2143 (a calcilytic) and any proinflammatory agent in their protein lysates and growth media assayed via antibody arrays, enzyme-linked immunosorbent assays (ELISAs), and immunoblots. Results show Aβ•CaSR signaling upregulated the synthesis and release/shedding of proinflammatory interleukin (IL)-6, intercellular adhesion molecule-1 (ICAM-1) (holoprotein and soluble [s] fragment), Regulated upon Activation, normal T cell Expressed and presumably Secreted (RANTES), and monocyte chemotactic protein (MCP)-2. Adding NPS 2143 (i) totally suppressed IL-6′s oversecretion while remarkably reducing the other agents’ over-release; and (ii) more effectively than Aβ alone increased over controls the four agents’ distinctive intracellular accumulation. Conversely, NPS 2143 did not alter Aβ-induced surges in IL-1β, IL-3, IL-8, and IL-16 secretion, consequently revealing their Aβ•CaSR signaling-independence. Finally, Aβ25-35±NPS 2143 treatments left unchanged MCP-1′s and TIMP-2′s basal expression. Thus, NAHAs Aβ•CaSR signaling drove four proinflammatory agents’ over-release that NPS 2143 curtailed. Therefore, calcilytics would also abate NAHAs’ Aβ•CaSR signaling direct impact on AD’s neuroinflammation.
astrocytes, human, calcium-sensing receptor, IL-6, ICAM-1, RANTES, MCP-2, amyloid- β, neurodegeneration, neuroinflammation
File in questo prodotto:
File Dimensione Formato  
cells-09-01386.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 708.56 kB
Formato Adobe PDF
708.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1018900
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact