Individuals with Parkinson's disease (PD) show poor walking performance compared to healthy adults. Leverage changes may provide insight into this walking abnormality, since they have important effects on both biomechanical and physiological variables. Hence, we investigated the differences in internal and external moment arms at the knee and ankle joints, as well as the effective mechanical advantage during walking at self-selected speed. Furthermore, the effects on walking of a simultaneous cognitive task were analysed. Kinetic (resultant ground reaction force and joint moments), kinematic (movement speed) and mechanical leverage (internal and external moment arms) parameters of 10 mild-to-moderate PD patients and 10 age-matched controls were measured in single and dual task condition. Finally, effective mechanical advantage was calculated as the ratio between internal and external moment arm for each joint. PD patients had a slower walking and showed larger and lower values of knee and ankle joint moments, respectively. No difference in force among groups was recorded. External moment arms were larger (in both joints) for PD, whereas slight changes were observed for internal moment arms. Consequently, effective mechanical advantage values seemed to be lower for PD. Surprisingly, leverage difference among groups was reduced during the dual task condition, resulting in a "more effective" walking strategy for PD. These findings suggest that during single task PD patients have several leverage disadvantages, which could affect the joint assessment. On the contrary, during dual task they reduced these mechanical negative effects by positively obtaining normal values of effective mechanical advantage.

Leverage mechanical alterations during walking at self-selected speed in patients with Parkinson's disease

Nardello, F;Bombieri, F;Monte, A
2020

Abstract

Individuals with Parkinson's disease (PD) show poor walking performance compared to healthy adults. Leverage changes may provide insight into this walking abnormality, since they have important effects on both biomechanical and physiological variables. Hence, we investigated the differences in internal and external moment arms at the knee and ankle joints, as well as the effective mechanical advantage during walking at self-selected speed. Furthermore, the effects on walking of a simultaneous cognitive task were analysed. Kinetic (resultant ground reaction force and joint moments), kinematic (movement speed) and mechanical leverage (internal and external moment arms) parameters of 10 mild-to-moderate PD patients and 10 age-matched controls were measured in single and dual task condition. Finally, effective mechanical advantage was calculated as the ratio between internal and external moment arm for each joint. PD patients had a slower walking and showed larger and lower values of knee and ankle joint moments, respectively. No difference in force among groups was recorded. External moment arms were larger (in both joints) for PD, whereas slight changes were observed for internal moment arms. Consequently, effective mechanical advantage values seemed to be lower for PD. Surprisingly, leverage difference among groups was reduced during the dual task condition, resulting in a "more effective" walking strategy for PD. These findings suggest that during single task PD patients have several leverage disadvantages, which could affect the joint assessment. On the contrary, during dual task they reduced these mechanical negative effects by positively obtaining normal values of effective mechanical advantage.
Dual task; Effective mechanical advantage; Locomotion disorder; Moment arms; Parkinson
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1018360
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact