In the present contribution, four classes of Ln(iii) complexes (Ln = Eu and Tb) have been synthesized and characterized in aqueous solution. They differ by charge, Ln(bpcd)+ [bpcd2- = N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane N,N'-diacetate] and Ln(bQcd)+ (bQcd2- = N,N'-bis(2-quinolinmethyl)-trans-1,2-diaminocyclohexane N,N'-diacetate) being positively charged and Ln(PyC3A) (PyC3A3- = N-picolyl-N,N',N'-trans-l,2-cyclohexylenediaminetriacetate) and Ln(QC3A) (QC3A3- = N-quinolyl-N,N',N'-trans-l,2-cyclohexylenediaminetriacetate) being neutral. Combined DFT, spectrophotometric and potentiometric studies reveal the presence, under physiological conditions (pH 7.4), of a couple of equally and highly stable isomers differing by the stereochemistry of the ligands (trans-N,N and trans-O,O for bpcd2- and bQcd2-; trans-O,O and trans-N,O for PyC3A3- and QC3A3-). Their high log β values (9.97 < log β < 15.68), the presence of an efficient antenna effect and the strong increase of the Ln(iii) luminescence intensity as a function of the hydrogen carbonate concentration in physiological solution, render these complexes as very promising optical probes for a selective detection of HCO3-in cellulo or in extracellular fluid. This particularly applies to the cationic Eu(bpcd)+, Tb(bpcd)+ and Eu(bQcd)+ complexes, which are capable of guesting up to two hydrogen carbonate anions in the inner coordination sphere of the metal ion, so that they show an unprecedented affinity towards HCO3- (log K for the formation of the adduct in the 4.6-5.9 range).

Eu(iii) and Tb(iii) complexes of 6-fold coordinating ligands showing high affinity for the hydrogen carbonate ion: a spectroscopic and thermodynamic study

Piccinelli, Fabio;De Rosa, Chiara;Bettinelli, Marco
2019-01-01

Abstract

In the present contribution, four classes of Ln(iii) complexes (Ln = Eu and Tb) have been synthesized and characterized in aqueous solution. They differ by charge, Ln(bpcd)+ [bpcd2- = N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane N,N'-diacetate] and Ln(bQcd)+ (bQcd2- = N,N'-bis(2-quinolinmethyl)-trans-1,2-diaminocyclohexane N,N'-diacetate) being positively charged and Ln(PyC3A) (PyC3A3- = N-picolyl-N,N',N'-trans-l,2-cyclohexylenediaminetriacetate) and Ln(QC3A) (QC3A3- = N-quinolyl-N,N',N'-trans-l,2-cyclohexylenediaminetriacetate) being neutral. Combined DFT, spectrophotometric and potentiometric studies reveal the presence, under physiological conditions (pH 7.4), of a couple of equally and highly stable isomers differing by the stereochemistry of the ligands (trans-N,N and trans-O,O for bpcd2- and bQcd2-; trans-O,O and trans-N,O for PyC3A3- and QC3A3-). Their high log β values (9.97 < log β < 15.68), the presence of an efficient antenna effect and the strong increase of the Ln(iii) luminescence intensity as a function of the hydrogen carbonate concentration in physiological solution, render these complexes as very promising optical probes for a selective detection of HCO3-in cellulo or in extracellular fluid. This particularly applies to the cationic Eu(bpcd)+, Tb(bpcd)+ and Eu(bQcd)+ complexes, which are capable of guesting up to two hydrogen carbonate anions in the inner coordination sphere of the metal ion, so that they show an unprecedented affinity towards HCO3- (log K for the formation of the adduct in the 4.6-5.9 range).
2019
LANTHANIDE COMPLEXES; EUROPIUM COMPLEXES; CELLULAR UPTAKE; LUMINESCENCE; PROBES; STABILITY; CONSTANTS; WATER; LOCALIZATION; EMISSION
File in questo prodotto:
File Dimensione Formato  
DT (2019).pdf

solo utenti autorizzati

Licenza: Accesso ristretto
Dimensione 5.15 MB
Formato Adobe PDF
5.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1017240
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact