The next stage for robotics development is to introduce autonomy and cooperation with human agents in tasks that require high levels of precision and/or that exert considerable physical strain. To guarantee the highest possible safety standards, the best approach is to devise a deterministic automaton that performs identically for each operation. Clearly, such approach inevitably fails to adapt itself to changing environments or different human companions. In a surgical scenario, the highest variability happens for the timing of different actions performed within the same phases. This thesis explores the solutions adopted in pursuing automation in robotic minimally-invasive surgeries (R-MIS) and presents a novel cognitive control architecture that uses a multi-modal neural network trained on a cooperative task performed by human surgeons and produces an action segmentation that provides the required timing for actions while maintaining full phase execution control via a deterministic Supervisory Controller and full execution safety by a velocity-constrained Model-Predictive Controller.
Gesture Recognition and Control for Semi-Autonomous Robotic Assistant Surgeons
Giacomo De Rossi
2020-01-01
Abstract
The next stage for robotics development is to introduce autonomy and cooperation with human agents in tasks that require high levels of precision and/or that exert considerable physical strain. To guarantee the highest possible safety standards, the best approach is to devise a deterministic automaton that performs identically for each operation. Clearly, such approach inevitably fails to adapt itself to changing environments or different human companions. In a surgical scenario, the highest variability happens for the timing of different actions performed within the same phases. This thesis explores the solutions adopted in pursuing automation in robotic minimally-invasive surgeries (R-MIS) and presents a novel cognitive control architecture that uses a multi-modal neural network trained on a cooperative task performed by human surgeons and produces an action segmentation that provides the required timing for actions while maintaining full phase execution control via a deterministic Supervisory Controller and full execution safety by a velocity-constrained Model-Predictive Controller.File | Dimensione | Formato | |
---|---|---|---|
derossi_phd_thesis.pdf
accesso aperto
Descrizione: Tesi di Dottorato
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
10.92 MB
Formato
Adobe PDF
|
10.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.