We develop refined inference for spatial regression models with predetermined regressors. The ordinary least squares estimate of the spatial parameter is neither consistent, nor asymptotically normal, unless the elements of the spatial weight matrix uniformly vanish as sample size diverges. We develop refined testing of the hypothesis of no spatial dependence, without requiring negligibility of spatial weights, by formal Edgeworth expansions. We also develop higher-order expansions for both an unstudentized and a studentized transformed estimator, where the studentized one can be used to provide refined interval estimates. A Monte Carlo study of finite sample performance is included.

Higher-Order Least Squares Inference for Spatial Autoregressions

Francesca Rossi
;
2023-01-01

Abstract

We develop refined inference for spatial regression models with predetermined regressors. The ordinary least squares estimate of the spatial parameter is neither consistent, nor asymptotically normal, unless the elements of the spatial weight matrix uniformly vanish as sample size diverges. We develop refined testing of the hypothesis of no spatial dependence, without requiring negligibility of spatial weights, by formal Edgeworth expansions. We also develop higher-order expansions for both an unstudentized and a studentized transformed estimator, where the studentized one can be used to provide refined interval estimates. A Monte Carlo study of finite sample performance is included.
2023
Spatial autoregression; least squares estimation; higher-order inference; Edgeworth expansion; testing spatial independence.
File in questo prodotto:
File Dimensione Formato  
OLS_SARX_ JoE_final.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Accesso ristretto
Dimensione 636.51 kB
Formato Adobe PDF
636.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
supplement_revised.pdf

solo utenti autorizzati

Descrizione: Supplementary material
Tipologia: Altro materiale allegato
Licenza: Accesso ristretto
Dimensione 296.93 kB
Formato Adobe PDF
296.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1014279
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact