Abstract The cytochrome P450 system transforms AA to hydroxyeicosatetraenoic acid (HETE) metabolites that are vasoactive and affect transport in several nephron segments. A principal product of this system, 20-HETE, participates in key mechanisms that regulate the renal circulation and extracellular fluid volume. We hypothesized that excess production of 20-HETE, which constricts the renal vasculature, contributes to the renal functional disturbances in patients with hepatic cirrhosis, particularly the depression of renal hemodynamics. The development of a precise and sensitive gas chromatographic/mass spectrometric method makes it possible to measure 20-HETE and the subterminal HETEs (16-,17-,18-, and 19-HETEs) in biological fluids. As 20-HETE was excreted as the glucuronide conjugate, measurement of 20-HETE required treatment of urine with glucuronidase. We measured HETEs in the urine of patients with cirrhosis, and compared these values to those of normal subjects. Urinary excretion rate of 20-HETE was highest in patients with ascites; 12.5+/-3.2 ng/min vs. 5.0+/-1.5 and 1.6+/-0.2 ng/min in cirrhotic patients without ascites and in normal subjects, respectively. Excretion of 16-, 17-, and 18-HETEs was not increased. In patients with cirrhosis, the excretory rate of 20-HETE was several-fold higher than those of prostaglandins and thromboxane, whereas in normal subjects 20-HETE and prostaglandins were excreted at similar rates. Of the eicosanoids, only increased excretion of 20-HETE in subjects with cirrhosis was correlated (r = -0.61; P < 0.01) with reduction of renal plasma flow (RPF).

Eicosanoid excretion in hepatic cirrhosis - Predominance of 20-HETE

D. SACERDOTI;
1997-01-01

Abstract

Abstract The cytochrome P450 system transforms AA to hydroxyeicosatetraenoic acid (HETE) metabolites that are vasoactive and affect transport in several nephron segments. A principal product of this system, 20-HETE, participates in key mechanisms that regulate the renal circulation and extracellular fluid volume. We hypothesized that excess production of 20-HETE, which constricts the renal vasculature, contributes to the renal functional disturbances in patients with hepatic cirrhosis, particularly the depression of renal hemodynamics. The development of a precise and sensitive gas chromatographic/mass spectrometric method makes it possible to measure 20-HETE and the subterminal HETEs (16-,17-,18-, and 19-HETEs) in biological fluids. As 20-HETE was excreted as the glucuronide conjugate, measurement of 20-HETE required treatment of urine with glucuronidase. We measured HETEs in the urine of patients with cirrhosis, and compared these values to those of normal subjects. Urinary excretion rate of 20-HETE was highest in patients with ascites; 12.5+/-3.2 ng/min vs. 5.0+/-1.5 and 1.6+/-0.2 ng/min in cirrhotic patients without ascites and in normal subjects, respectively. Excretion of 16-, 17-, and 18-HETEs was not increased. In patients with cirrhosis, the excretory rate of 20-HETE was several-fold higher than those of prostaglandins and thromboxane, whereas in normal subjects 20-HETE and prostaglandins were excreted at similar rates. Of the eicosanoids, only increased excretion of 20-HETE in subjects with cirrhosis was correlated (r = -0.61; P < 0.01) with reduction of renal plasma flow (RPF).
1997
cirrhosis
20HETE
kidney
prostaglandins
File in questo prodotto:
File Dimensione Formato  
jci1997.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 188.26 kB
Formato Adobe PDF
188.26 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1011714
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 60
social impact