We study the radial-hedgehog solution on a three-dimensional (3D) spherical shell with radial boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. We prove that the radial-hedgehog solution is the unique minimizer of the Landau-de Gennes energy in two separate regimes: (i) for thin shells when the temperature is below the critical nematic supercooling temperature and (ii) for a fixed shell width at sufficiently low temperatures. In case (i), we provide explicit geometry-dependent criteria for the global minimality of the radial-hedgehog solution. (C) 2015 Elsevier B.V. All rights reserved.
Radial symmetry on three-dimensional shells in the Landau–de Gennes theory
Canevari, Giacomo;
2016-01-01
Abstract
We study the radial-hedgehog solution on a three-dimensional (3D) spherical shell with radial boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. We prove that the radial-hedgehog solution is the unique minimizer of the Landau-de Gennes energy in two separate regimes: (i) for thin shells when the temperature is below the critical nematic supercooling temperature and (ii) for a fixed shell width at sufficiently low temperatures. In case (i), we provide explicit geometry-dependent criteria for the global minimality of the radial-hedgehog solution. (C) 2015 Elsevier B.V. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
Canevari,Ramaswamy,Majumdar.pdf
solo utenti autorizzati
Tipologia:
Versione dell'editore
Licenza:
Accesso ristretto
Dimensione
473.01 kB
Formato
Adobe PDF
|
473.01 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.