We study tunneling and mixing time for a non-reversible probabilistic cellular automaton. With a suitable choice of the parameters, we first show that the stationary distribution is close in total variation to a low temperature Ising model. Then we prove that both the mixing time and the time to exit a metastable state grow polynomially in the size of the system, while this growth is exponential in reversible dynamics. In this model, non-reversibility, parallel updatings and a suitable choice of boundary conditions combine to produce an efficient dynamical stability.
Fast Mixing for the Low Temperature 2D Ising Model Through Irreversible Parallel Dynamics
DAI PRA, PAOLO;
2015-01-01
Abstract
We study tunneling and mixing time for a non-reversible probabilistic cellular automaton. With a suitable choice of the parameters, we first show that the stationary distribution is close in total variation to a low temperature Ising model. Then we prove that both the mixing time and the time to exit a metastable state grow polynomially in the size of the system, while this growth is exponential in reversible dynamics. In this model, non-reversibility, parallel updatings and a suitable choice of boundary conditions combine to produce an efficient dynamical stability.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
dss_review.pdf
non disponibili
Dimensione
354.17 kB
Formato
Adobe PDF
|
354.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.