We propose a discrete-time stochastic dynamics for a system of many interacting agents. At each time step agents aim at maximizing their individual payoff, depending on their action, on the global trend of the system and on a random noise; frictions are also taken into account. The equilibrium of the resulting sequence of games gives rise to a stochastic evolution. In the limit of infinitely many agents, a law of large numbers is obtained; the limit dynamics consist in an implicit dynamical system, possibly multiple valued. For a special model, we determine the phase diagram for the long time behavior of these limit dynamics and we show the existence of a phase, where a locally stable fixed point coexists with a locally stable periodic orbit.

Strategic Interaction in Trend-Driven Dynamics

DAI PRA, PAOLO;
2013-01-01

Abstract

We propose a discrete-time stochastic dynamics for a system of many interacting agents. At each time step agents aim at maximizing their individual payoff, depending on their action, on the global trend of the system and on a random noise; frictions are also taken into account. The equilibrium of the resulting sequence of games gives rise to a stochastic evolution. In the limit of infinitely many agents, a law of large numbers is obtained; the limit dynamics consist in an implicit dynamical system, possibly multiple valued. For a special model, we determine the phase diagram for the long time behavior of these limit dynamics and we show the existence of a phase, where a locally stable fixed point coexists with a locally stable periodic orbit.
File in questo prodotto:
File Dimensione Formato  
JSP2013.pdf

non disponibili

Dimensione 657.73 kB
Formato Adobe PDF
657.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1009602
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact