In the last years, some extensions of ω-regular languages, namely, ωB-regular (ω-regular languages extended with boundedness), ωS-regular (ω-regular languages extended with strong unboundedness), and ωBS-regular languages (the combination of ωB- and ωS-regular ones), have been proposed in the literature. While the first two classes satisfy a generalized closure property, which states that the complement of an ωB-regular (resp., ωS-regular) language is an ωS-regular (resp., ωB-regular) one, the last class is not closed under complementation. The existence of non-ωBS-regular languages that are the complements of some ωBS-regular ones and express fairly natural asymptotic behaviors motivates the search for other significant classes of extended ω-regular languages. In this paper, we present the class of ωT-regular languages, which includes meaningful languages that are not ωBS-regular. We define this new class of languages in terms of ωT-regular expressions. Then, we introduce a new class of automata (counter-check automata) and we prove that (i) their emptiness problem is decidable in PTIME, and (ii) they are expressive enough to capture ωT-regular languages. We also provide an encoding of ωT-regular expressions into S1S+U. Finally, we investigate a stronger variant of ωT-regular languages (ωTs-regular languages). We characterize the resulting class of languages in terms of ωTs-regular expressions, and we show how to map it into a suitable class of automata, called counter-queue automata. We conclude the paper with a comparison of the expressiveness of ωT- and ωTs-regular languages and of the corresponding automata.

Beyond omega-regular languages: omegaT-regular expressions and their automata and logic counterparts

Angelo Montanari;Pietro Sala
2020-01-01

Abstract

In the last years, some extensions of ω-regular languages, namely, ωB-regular (ω-regular languages extended with boundedness), ωS-regular (ω-regular languages extended with strong unboundedness), and ωBS-regular languages (the combination of ωB- and ωS-regular ones), have been proposed in the literature. While the first two classes satisfy a generalized closure property, which states that the complement of an ωB-regular (resp., ωS-regular) language is an ωS-regular (resp., ωB-regular) one, the last class is not closed under complementation. The existence of non-ωBS-regular languages that are the complements of some ωBS-regular ones and express fairly natural asymptotic behaviors motivates the search for other significant classes of extended ω-regular languages. In this paper, we present the class of ωT-regular languages, which includes meaningful languages that are not ωBS-regular. We define this new class of languages in terms of ωT-regular expressions. Then, we introduce a new class of automata (counter-check automata) and we prove that (i) their emptiness problem is decidable in PTIME, and (ii) they are expressive enough to capture ωT-regular languages. We also provide an encoding of ωT-regular expressions into S1S+U. Finally, we investigate a stronger variant of ωT-regular languages (ωTs-regular languages). We characterize the resulting class of languages in terms of ωTs-regular expressions, and we show how to map it into a suitable class of automata, called counter-queue automata. We conclude the paper with a comparison of the expressiveness of ωT- and ωTs-regular languages and of the corresponding automata.
2020
Counter automata, Monadic second-order logic of one successor, ω-regular expressions, ω-regular languages
File in questo prodotto:
File Dimensione Formato  
Beyond-regular-languages-Tregular-expressions-and-their-automata-and-logic-counterparts2020Theoretical-Computer-Science.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Accesso ristretto
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1001903
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact