Accrual of carbon (C) and nitrogen (N) in soil is a significant and realizable management option to mitigate climate change; thus, a clear understanding of the mechanisms controlling the persistence of C and N in soil organic matter (SOM) across different ecosystems has never been more needed. Here, we investigated SOM distribution between physically and chemically stabilized fractions in soils from a variety of ecosystems (i.e., coniferous and broadleaved forest soils, grassland soils, technosols, and agricultural soils). Using elemental and thermal analyses, we examined changes in the quantity and quality of physically fractionated SOM pools characterized by different mechanisms of protection from decomposition. Independently of the ecosystem type, most of the organic C and total N were found in the mineral-associated SOM pool, known to be protected mainly by chemical mechanisms. Indexes of thermal stability and C/N ratio of this heavy SOM fraction were lower (especially in agricultural soils) compared to light SOM fractions found free or occluded in aggregates, and suggested a marked presence of inherently labile compounds. Our results confirm that the association of labile organic molecules with soil minerals is a major stabilization mechanism of SOM, and demonstrate that this is a generalizable finding occurring across different mineral soils and ecosystems.

Distribution and thermal stability of physically and chemically protected organic matter fractions in soils across different ecosystems

Giannetta, Beatrice;Zaccone, Claudio
2018-01-01

Abstract

Accrual of carbon (C) and nitrogen (N) in soil is a significant and realizable management option to mitigate climate change; thus, a clear understanding of the mechanisms controlling the persistence of C and N in soil organic matter (SOM) across different ecosystems has never been more needed. Here, we investigated SOM distribution between physically and chemically stabilized fractions in soils from a variety of ecosystems (i.e., coniferous and broadleaved forest soils, grassland soils, technosols, and agricultural soils). Using elemental and thermal analyses, we examined changes in the quantity and quality of physically fractionated SOM pools characterized by different mechanisms of protection from decomposition. Independently of the ecosystem type, most of the organic C and total N were found in the mineral-associated SOM pool, known to be protected mainly by chemical mechanisms. Indexes of thermal stability and C/N ratio of this heavy SOM fraction were lower (especially in agricultural soils) compared to light SOM fractions found free or occluded in aggregates, and suggested a marked presence of inherently labile compounds. Our results confirm that the association of labile organic molecules with soil minerals is a major stabilization mechanism of SOM, and demonstrate that this is a generalizable finding occurring across different mineral soils and ecosystems.
2018
C sequestration; Physical fractionation; Soil N; Soil organic matter; Technosols; TGA; Microbiology; Agronomy and Crop Science; Soil Science
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1001423
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 57
social impact