It is becoming increasingly evident that the role of the gut microbiota (GM) is not limited by the walls of the gastrointestinal tract (supporting the digestion, absorption of nutrients, intestinal motility and resistance to pathogens), but it also influences normal physiology of the whole organism and contribute to the broad range of diseases including those affecting the central nervous system (CNS). The growing appreciation of the role of intestinal bacteria in brain physiology has led to the establishment of so called “gut-brain axis”, or the “microbiota-gut-brain axis”, a bidirectional communication network between the gut and the brain. We hypothesized that gut microbiota form subjects affected by neural pathology can modulate in healthy subjects excitability in CNS and, finally, positively correlate with the level of seizure activity. The data obtained in this study suggests that mice received “pro-pathological” microbiota have compromised brain excitability. Microbiota composition of the donors with induced temporal lobe epilepsy (TLE) was characterized by the increase in Sutterella, Prevotella, Dorea, Coprobacillus and Candidatus Arthromitus in comparison with the baseline. These alterations, through the GBA, may possibly have an effect on the excitability of the brain and subsequently on the threshold for the seizure activity.
Possible impact of the gut microbiota on the excitability of the brain
Kosenkova, Inna
2018-01-01
Abstract
It is becoming increasingly evident that the role of the gut microbiota (GM) is not limited by the walls of the gastrointestinal tract (supporting the digestion, absorption of nutrients, intestinal motility and resistance to pathogens), but it also influences normal physiology of the whole organism and contribute to the broad range of diseases including those affecting the central nervous system (CNS). The growing appreciation of the role of intestinal bacteria in brain physiology has led to the establishment of so called “gut-brain axis”, or the “microbiota-gut-brain axis”, a bidirectional communication network between the gut and the brain. We hypothesized that gut microbiota form subjects affected by neural pathology can modulate in healthy subjects excitability in CNS and, finally, positively correlate with the level of seizure activity. The data obtained in this study suggests that mice received “pro-pathological” microbiota have compromised brain excitability. Microbiota composition of the donors with induced temporal lobe epilepsy (TLE) was characterized by the increase in Sutterella, Prevotella, Dorea, Coprobacillus and Candidatus Arthromitus in comparison with the baseline. These alterations, through the GBA, may possibly have an effect on the excitability of the brain and subsequently on the threshold for the seizure activity.File | Dimensione | Formato | |
---|---|---|---|
PhD Inna Kosenkova.pdf
Open Access dal 21/04/2020
Descrizione: PhD thesis Inna Kosenkova
Tipologia:
Tesi di dottorato
Licenza:
Accesso ristretto
Dimensione
2.73 MB
Formato
Adobe PDF
|
2.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.