It is becoming increasingly evident that the role of the gut microbiota (GM) is not limited by the walls of the gastrointestinal tract (supporting the digestion, absorption of nutrients, intestinal motility and resistance to pathogens), but it also influences normal physiology of the whole organism and contribute to the broad range of diseases including those affecting the central nervous system (CNS). The growing appreciation of the role of intestinal bacteria in brain physiology has led to the establishment of so called “gut-brain axis”, or the “microbiota-gut-brain axis”, a bidirectional communication network between the gut and the brain. We hypothesized that gut microbiota form subjects affected by neural pathology can modulate in healthy subjects excitability in CNS and, finally, positively correlate with the level of seizure activity. The data obtained in this study suggests that mice received “pro-pathological” microbiota have compromised brain excitability. Microbiota composition of the donors with induced temporal lobe epilepsy (TLE) was characterized by the increase in Sutterella, Prevotella, Dorea, Coprobacillus and Candidatus Arthromitus in comparison with the baseline. These alterations, through the GBA, may possibly have an effect on the excitability of the brain and subsequently on the threshold for the seizure activity.

Possible impact of the gut microbiota on the excitability of the brain

Kosenkova, Inna
2018-01-01

Abstract

It is becoming increasingly evident that the role of the gut microbiota (GM) is not limited by the walls of the gastrointestinal tract (supporting the digestion, absorption of nutrients, intestinal motility and resistance to pathogens), but it also influences normal physiology of the whole organism and contribute to the broad range of diseases including those affecting the central nervous system (CNS). The growing appreciation of the role of intestinal bacteria in brain physiology has led to the establishment of so called “gut-brain axis”, or the “microbiota-gut-brain axis”, a bidirectional communication network between the gut and the brain. We hypothesized that gut microbiota form subjects affected by neural pathology can modulate in healthy subjects excitability in CNS and, finally, positively correlate with the level of seizure activity. The data obtained in this study suggests that mice received “pro-pathological” microbiota have compromised brain excitability. Microbiota composition of the donors with induced temporal lobe epilepsy (TLE) was characterized by the increase in Sutterella, Prevotella, Dorea, Coprobacillus and Candidatus Arthromitus in comparison with the baseline. These alterations, through the GBA, may possibly have an effect on the excitability of the brain and subsequently on the threshold for the seizure activity.
2018
Microbiota, gut-brain axis, epilepsy, inflammation
File in questo prodotto:
File Dimensione Formato  
PhD Inna Kosenkova.pdf

Open Access dal 21/04/2020

Descrizione: PhD thesis Inna Kosenkova
Tipologia: Tesi di dottorato
Licenza: Accesso ristretto
Dimensione 2.73 MB
Formato Adobe PDF
2.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/978978
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact