The production of electricity by the combustion of fossil fuels or by the fission of radioactive materials leads to the pollution of Earth’s environment, impoverishes Earth of its resources and does not secure the future for generations to come. Although International Energy Agency (IEA) in its annual reports depicts an increase of electricity production from renewable energy sources, the increasing need for low cost clean energy pushes research towards new frontiers. In photovoltaics, year after year, we see research coming to fruition with the announcements of new world record efficiencies for many technologies: new emerging technologies, based on innovative concepts or materials, are added to the mature ones, such as those based on Si, CdTe o CuInxGa(1-x)Se2. Examples of these innovations are those based on semiconductor compounds totally constituted by non-toxic and Earth’s crust abundant chemical species (which could potentially be low cost materials), such as Cu2ZnSnS4 or SnS. In this doctoral dissertation, we will investigate some aspects of SnS (tin sulphide), in view of its application as absorber layer for thin film solar cells. Tin sulphide is characterized by excellent optoelectronic properties (direct band gap in the region of the maximum theoretical efficiency, excellent absorption coefficient, and shows intrinsically p-type conduction), which makes SnS a promising candidate for the photovoltaic of the future. In the first part of this thesis, we will discuss the issues related to the deposition apparatus, and the strategies applied to solve them. Afterwards, the SnS based solar device, which exhibited the best performance, will be described and discussed: our result is consistent with similar processes from international laboratories. Since the reproducibility of this result has been observed to be a complex task, we will study its origin. A possible correlation between the performance of our devices and the thermal history of the SnS raw material used to evaporate the absorber layer has been suggested. Then, since even the best performing device exhibited a poor performance, i.e. far from the theoretical limit for a material with the SnS energy band gap, we will study the effects of several post deposition treatments, designed to enhance optoelectronic characteristics by improving the crystalline quality of the absorber material. Similar post deposition treatments are fundamental in other technologies, as in the CdTe case. We will study two types of thermal treatment: those taking place in a controlled atmosphere and those in air, by adding different compounds (with and without chlorine) to promote the absorber layer recrystallization process. The results will be discussed case by case. Up to now, we focused on the improvement of the absorber layer to enhance the performance of our devices. In the last part of this thesis, we will investigate some alternatives for the other layers constituting the solar device: the front and back contact, and the n-type semiconductor material which completes the p-n junction.

Produrre energia elettrica dalla combustione di carburanti di origine fossile o dalla fissione di materiale radioattivo significa inquinare il pianeta, impoverirlo delle sue risorse e non garantire un futuro alle generazioni future. Sebbene nei suoi report annuali l’agenzia internazionale per l’energia (IEA) dipinga una situazione di espansione della produzione di energia “verde”, il crescente fabbisogno di energia pulita e a basso costo spinge la ricerca verso nuove frontiere. Nel panorama del fotovoltaico, di anno in anno si vedono maturare i frutti della ricerca negli annunci di nuovi record mondiali di efficienza per molte tecnologie: nuove tecnologie emergenti, basate su concetti o materiali innovativi, si stanno aggiungendo a tecnologie mature, quali quelle basate su Si, CdTe o CuInxGa(1-x)Se2. Un esempio di queste nuove tecnologie sono quelle basate sui semiconduttori composti totalmente da elementi chimici non tossici ed abbondanti nella crosta terrestre (quindi potenzialmente a basso costo), come Cu2ZnSnS4 o SnS. In questa tesi di dottorato, verranno studiati alcuni aspetti del solfuro di stagno, SnS, in vista di una sua possibile applicazione come strato assorbente per celle solari a film sottile. Il solfuro di stagno ha ottime proprietà optoelettroniche (band gap diretta nella regione di massima efficienza teorica, ottimo coefficiente di assorbimento della luce, e mostra intrinsecamente conduzione di tipo p), che lo rendono un ottimo candidato per il fotovoltaico del futuro. In questa tesi, verranno dapprima discusse le difficoltà incontrate con l’apparato di deposizione e come sono state superate. Successivamente verrà descritto e analizzato il dispositivo solare basato sul solfuro di stagno e caratterizzato dalla migliore prestazione: questo risultato è in linea con quanto pubblicato in letteratura. La difficoltà nel riprodurre questo risultato in modo sistematico ci spingerà poi ad indagarne le possibili cause: suggeriremo la presenza di una possibile correlazione tra la performance dei nostri dispositivi e la storia termica del materiale grezzo utilizzato per evaporare lo strato assorbente. Nel proseguo della tesi, dato che anche il miglior risultato ha comunque mostrato una performance lontana dal limite teorico per un materiale con la band gap dell’SnS, studieremo gli effetti di alcuni trattamenti post deposizione ideati per migliorare le caratteristiche optoelettroniche attraverso il miglioramento della qualità cristallina dell’assorbitore. Tali trattamenti post deposizione sono fondamentali in altre tecnologie, come nel caso del CdTe. Si studieranno due tipologie di trattamento termico: in atmosfera controllata o in aria, utilizzando vari composti a base di cloro e non, atti a favorire la ricristallizzazione dell’assorbitore. I risultati ottenuti verranno discussi caso per caso. Infine, anziché concentrarci ancora sulle caratteristiche dell’assorbitore stesso, ma sempre con lo scopo finale di migliorare le prestazioni dei nostri dispositivi, investigheremo delle alternative per gli altri strati che costituiscono nel loro insieme la cella solare: il contatto elettrico anteriore, quello posteriore, e infine il materiale semiconduttore di tipo n che completa la giunzione p-n.

Tin sulphide solar cells by thermal evaporation

DI MARE, Simone
2017-01-01

Abstract

The production of electricity by the combustion of fossil fuels or by the fission of radioactive materials leads to the pollution of Earth’s environment, impoverishes Earth of its resources and does not secure the future for generations to come. Although International Energy Agency (IEA) in its annual reports depicts an increase of electricity production from renewable energy sources, the increasing need for low cost clean energy pushes research towards new frontiers. In photovoltaics, year after year, we see research coming to fruition with the announcements of new world record efficiencies for many technologies: new emerging technologies, based on innovative concepts or materials, are added to the mature ones, such as those based on Si, CdTe o CuInxGa(1-x)Se2. Examples of these innovations are those based on semiconductor compounds totally constituted by non-toxic and Earth’s crust abundant chemical species (which could potentially be low cost materials), such as Cu2ZnSnS4 or SnS. In this doctoral dissertation, we will investigate some aspects of SnS (tin sulphide), in view of its application as absorber layer for thin film solar cells. Tin sulphide is characterized by excellent optoelectronic properties (direct band gap in the region of the maximum theoretical efficiency, excellent absorption coefficient, and shows intrinsically p-type conduction), which makes SnS a promising candidate for the photovoltaic of the future. In the first part of this thesis, we will discuss the issues related to the deposition apparatus, and the strategies applied to solve them. Afterwards, the SnS based solar device, which exhibited the best performance, will be described and discussed: our result is consistent with similar processes from international laboratories. Since the reproducibility of this result has been observed to be a complex task, we will study its origin. A possible correlation between the performance of our devices and the thermal history of the SnS raw material used to evaporate the absorber layer has been suggested. Then, since even the best performing device exhibited a poor performance, i.e. far from the theoretical limit for a material with the SnS energy band gap, we will study the effects of several post deposition treatments, designed to enhance optoelectronic characteristics by improving the crystalline quality of the absorber material. Similar post deposition treatments are fundamental in other technologies, as in the CdTe case. We will study two types of thermal treatment: those taking place in a controlled atmosphere and those in air, by adding different compounds (with and without chlorine) to promote the absorber layer recrystallization process. The results will be discussed case by case. Up to now, we focused on the improvement of the absorber layer to enhance the performance of our devices. In the last part of this thesis, we will investigate some alternatives for the other layers constituting the solar device: the front and back contact, and the n-type semiconductor material which completes the p-n junction.
2017
Solar cells, Thin film, Tin sulfide, SnS
Celle solari, Film sottile, Solfuro di stagno, SnS
Produrre energia elettrica dalla combustione di carburanti di origine fossile o dalla fissione di materiale radioattivo significa inquinare il pianeta, impoverirlo delle sue risorse e non garantire un futuro alle generazioni future. Sebbene nei suoi report annuali l’agenzia internazionale per l’energia (IEA) dipinga una situazione di espansione della produzione di energia “verde”, il crescente fabbisogno di energia pulita e a basso costo spinge la ricerca verso nuove frontiere. Nel panorama del fotovoltaico, di anno in anno si vedono maturare i frutti della ricerca negli annunci di nuovi record mondiali di efficienza per molte tecnologie: nuove tecnologie emergenti, basate su concetti o materiali innovativi, si stanno aggiungendo a tecnologie mature, quali quelle basate su Si, CdTe o CuInxGa(1-x)Se2. Un esempio di queste nuove tecnologie sono quelle basate sui semiconduttori composti totalmente da elementi chimici non tossici ed abbondanti nella crosta terrestre (quindi potenzialmente a basso costo), come Cu2ZnSnS4 o SnS. In questa tesi di dottorato, verranno studiati alcuni aspetti del solfuro di stagno, SnS, in vista di una sua possibile applicazione come strato assorbente per celle solari a film sottile. Il solfuro di stagno ha ottime proprietà optoelettroniche (band gap diretta nella regione di massima efficienza teorica, ottimo coefficiente di assorbimento della luce, e mostra intrinsecamente conduzione di tipo p), che lo rendono un ottimo candidato per il fotovoltaico del futuro. In questa tesi, verranno dapprima discusse le difficoltà incontrate con l’apparato di deposizione e come sono state superate. Successivamente verrà descritto e analizzato il dispositivo solare basato sul solfuro di stagno e caratterizzato dalla migliore prestazione: questo risultato è in linea con quanto pubblicato in letteratura. La difficoltà nel riprodurre questo risultato in modo sistematico ci spingerà poi ad indagarne le possibili cause: suggeriremo la presenza di una possibile correlazione tra la performance dei nostri dispositivi e la storia termica del materiale grezzo utilizzato per evaporare lo strato assorbente. Nel proseguo della tesi, dato che anche il miglior risultato ha comunque mostrato una performance lontana dal limite teorico per un materiale con la band gap dell’SnS, studieremo gli effetti di alcuni trattamenti post deposizione ideati per migliorare le caratteristiche optoelettroniche attraverso il miglioramento della qualità cristallina dell’assorbitore. Tali trattamenti post deposizione sono fondamentali in altre tecnologie, come nel caso del CdTe. Si studieranno due tipologie di trattamento termico: in atmosfera controllata o in aria, utilizzando vari composti a base di cloro e non, atti a favorire la ricristallizzazione dell’assorbitore. I risultati ottenuti verranno discussi caso per caso. Infine, anziché concentrarci ancora sulle caratteristiche dell’assorbitore stesso, ma sempre con lo scopo finale di migliorare le prestazioni dei nostri dispositivi, investigheremo delle alternative per gli altri strati che costituiscono nel loro insieme la cella solare: il contatto elettrico anteriore, quello posteriore, e infine il materiale semiconduttore di tipo n che completa la giunzione p-n.
File in questo prodotto:
File Dimensione Formato  
Simone Di Mare_PhD Thesis_17.05.2017.pdf

accesso aperto

Descrizione: Tesi di dottorato
Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 9.87 MB
Formato Adobe PDF
9.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/961461
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact