Grapevine is the most widely cultivated and economically important fruit crop in the world. Viticulture has been affected by the global warming currently under way over the past few decades (Webb et al., 2007). Improving the genetics of key grapevine functions is needed to keep producing high quality grapes and wine. In this context, a challenging task is to identify master regulators that program the development of grapevine organs and control transition from vegetative-to-mature growth featured by grape berries during the annual plant cycle. This transition, called véraison, is marked by profound biochemical, physiological and transcriptomic modifications that allow vegetative green berries to enter the ripening process. Thanks to an integrated network analysis performed on the grapevine global gene expression atlas and from a large berry transcriptomic data set (Massonnet, 2015; Palumbo et al., 2014; Fasoli et al., 2012) a new category of genes, called ‘switch’ genes, was identified; they were significantly up-regulated during the developmental shift and inversely correlated with many genes suppressed during the mature growth phase. Among them, plant-specific NAM/ATAF/CUC (NAC) transcription factors represent an interesting gene family due to their key role in the biological processes in plant development and stress responses (Jensen et al., 2014). Five NAC genes were selected for functional characterization as key factor candidates of the major transcriptome reprogramming during grapevine development. VvNAC11, VvNAC13, VvNAC33 and VvNAC60 were identified as ‘switch’ genes in the above-mentioned analysis whereas VvNAC03 was selected because it is a close homologue of tomato NOR (non-ripening), known for its crucial role in tomato fruit ripening regulation (Giovannoni, 2004; Giovannoni et al., 1995). Firstly, the five transcription factors were transiently over-expressed in Vitis vinifera to get an overview of their primary effects on native species. Secondly, we obtained grapevine plants that were stably transformed with VvNAC33 and VvNAC60 and subjected to molecular/phenotypic characterizations. VvNAC33 seemed to be involved in negative regulation of photosynthesis since over-expressing leaves revealed a chlorophyll breakdown, while VvNAC60 affected regular plant development, showing a slight growth and earlier stem lignification in comparison to a same-age plant control. These results reflected typical behaviors of plants undergoing ripening and senescence, thus supporting our working hypothesis proposing a crucial role of NACs in the transition from vegetative to mature development in grapevine. In order to identify downstream targets of the NAC transcription factors analyzed in this work, we performed microarray analysis on leaves of transient and stable ectopic expressing plants. We noted that both over-expressions affected a wide range of cellular processes and among the most represented functional categories we found transport, secondary metabolism and transcription factor activity. The identification of VvMYBA1, a known grapevine regulator of the anthocyanin biosynthetic pathway (Kobayashi et al., 2002), as VvNAC60 target suggests a VvNAC60 role in processes like anthocyanin biosynthesis featured by grape berries at the onset of ripening. Another approach used to clarify NACs roles was to check the ability of VvNACs to fulfil the tomato NOR function. Preliminary results revealed that VvNAC03 and VvNAC60 could partially complement the nor mutation in tomato, establishing a partial ripening phenotype in fruits. Taken together, these findings suggest the ability of the selected VvNACs to affect the expression of genes involved in the regulatory network that controls the developmental shift to a mature phase in grapevine. This work has shed some light on the roles of these NACs in grapevine development, but further analysis must be conducted to fully elucidate the molecular machinery in this complex regulation system.

La vite (Vitis vinifera L.), una delle più coltivate piante da frutto, riveste notevole importanza economica in tutto il mondo. Poichè negli ultimi decenni la viticoltura sta subendo gli effetti del riscaldamento globale (Webb et al., 2007), è necessario mantenere una produzione di uva e vino di elevata qualità. Una delle maggiori sfide consiste nell’identificazione dei principali geni regolatori dello sviluppo della pianta di vite durante il ciclo vegetale annuale e, in particolare, della transizione dalla fase vegetativa a quella matura (detta véraison), durante la quale avvengono profonde modificazioni biochimiche, fisiologiche e trascrizionali. Grazie ad un'analisi di network di co-espressione sull’atlante del trascrittoma della vite e ad un dataset di dati trascrizionali di bacche (Massonnet, 2015; Palumbo et al., 2014; Fasoli et al., 2012), è stata identificata una nuova categoria di geni chiamata 'switch’; tali geni sono significativamente up-regolati durante la transizione di fase ed inversamente correlati a molti geni soppressi durante la fase matura. Tra questi, i fattori di trascrizione NAM/ATAF/CUC (NAC) rappresentano un’interessante famiglia genica dato il ruolo chiave in processi biologici come sviluppo e risposte allo stress in pianta (Jensen et al., 2014). Per la caratterizzazione funzionale cinque geni NAC sono stati selezionati come putativi principali regolatori della riprogrammazione del trascrittoma durante la maturazione della vite. VvNAC11, VvNAC13, VvNAC33 e VvNAC60 sono stati identificati come geni 'switch' dalla sopra citata analisi, mentre VvNAC03 come gene omologo a NOR (non-ripening) di pomodoro, uno dei principali regolatori della maturazione di tale frutto (Giovannoni, 2004; Giovannoni et al., 1995). I cinque NAC sono stati sovra-espressi transientemente in Vitis vinifera per ottenere una panoramica dei loro effetti primari sul trascrittoma. Sono poi state ottenute e caratterizzate dal punto di vista molecolare e fenotipico piante di vite stabilmente trasformate con VvNAC33 e VvNAC60. VvNAC33 sembra essere coinvolto nella regolazione negativa della fotosintesi poiché le foglie sovra-esprimenti tale gene contengono una minor quantità di clorofilla, mentre VvNAC60 provoca una ridotta crescita della pianta e una prematura lignificazione dello stelo rispetto ad una pianta controllo della stessa età. Questi risultati riflettono comportamenti tipici di piante in fase di maturazione e senescenza, sostenendo l’ipotesi di un ruolo fondamentale dei NAC nella transizione di fase in vite. Al fine di identificare i target che agiscono a valle dei NAC, sono state eseguite analisi microarray sulle foglie delle piante trasformate in modo transiente e stabile. In entrambe le over-espressioni è stata influenzata l’espressione di un'ampia gamma di processi cellulari tra cui, tra le categorie funzionali più rappresentate, vi sono trasporto, metabolismo secondario e attività dei fattori di trascrizione. L'identificazione di VvMYBA1, un noto regolatore della biosintesi degli anotciani in vite (Kobayashi et al., 2002), come target di VvNAC60 suggerisce un ruolo di tale NAC in processi tipici dell’inizio della maturazione. Un altro approccio utilizzato in questo lavoro è stato la complementazione funzionale del mutante nor di pomodoro con i NAC selezionati. Risultati preliminari hanno rivelato che VvNAC03 e VvNAC60 sembrano avere una funzione simile a NOR poichè riescono a maturare almeno esternamente. In conclusione, i risultati ottenuti in questo lavoro suggeriscono la capacità dei VvNAC selezionati di influenzare l'espressione di geni coinvolti nella regolazione che controlla lo sviluppo dalla fase vegeativa alla fase matura in vite. Questo lavoro ha inizato a far luce sul ruolo dei NAC nello sviluppo della vite, ma dovranno essere effettuate ulteriori analisi per ottenere una piena compresione del macchinario molecolare che regola questo complesso sistema di regolazione.

MASTER REGULATORS OF THE VEGETATIVE-TO-MATURE ORGAN TRANSITION IN GRAPEVINE: THE ROLE OF NAC TRANSCRIPTION FACTORS

D'INCA', ERICA
2017-01-01

Abstract

Grapevine is the most widely cultivated and economically important fruit crop in the world. Viticulture has been affected by the global warming currently under way over the past few decades (Webb et al., 2007). Improving the genetics of key grapevine functions is needed to keep producing high quality grapes and wine. In this context, a challenging task is to identify master regulators that program the development of grapevine organs and control transition from vegetative-to-mature growth featured by grape berries during the annual plant cycle. This transition, called véraison, is marked by profound biochemical, physiological and transcriptomic modifications that allow vegetative green berries to enter the ripening process. Thanks to an integrated network analysis performed on the grapevine global gene expression atlas and from a large berry transcriptomic data set (Massonnet, 2015; Palumbo et al., 2014; Fasoli et al., 2012) a new category of genes, called ‘switch’ genes, was identified; they were significantly up-regulated during the developmental shift and inversely correlated with many genes suppressed during the mature growth phase. Among them, plant-specific NAM/ATAF/CUC (NAC) transcription factors represent an interesting gene family due to their key role in the biological processes in plant development and stress responses (Jensen et al., 2014). Five NAC genes were selected for functional characterization as key factor candidates of the major transcriptome reprogramming during grapevine development. VvNAC11, VvNAC13, VvNAC33 and VvNAC60 were identified as ‘switch’ genes in the above-mentioned analysis whereas VvNAC03 was selected because it is a close homologue of tomato NOR (non-ripening), known for its crucial role in tomato fruit ripening regulation (Giovannoni, 2004; Giovannoni et al., 1995). Firstly, the five transcription factors were transiently over-expressed in Vitis vinifera to get an overview of their primary effects on native species. Secondly, we obtained grapevine plants that were stably transformed with VvNAC33 and VvNAC60 and subjected to molecular/phenotypic characterizations. VvNAC33 seemed to be involved in negative regulation of photosynthesis since over-expressing leaves revealed a chlorophyll breakdown, while VvNAC60 affected regular plant development, showing a slight growth and earlier stem lignification in comparison to a same-age plant control. These results reflected typical behaviors of plants undergoing ripening and senescence, thus supporting our working hypothesis proposing a crucial role of NACs in the transition from vegetative to mature development in grapevine. In order to identify downstream targets of the NAC transcription factors analyzed in this work, we performed microarray analysis on leaves of transient and stable ectopic expressing plants. We noted that both over-expressions affected a wide range of cellular processes and among the most represented functional categories we found transport, secondary metabolism and transcription factor activity. The identification of VvMYBA1, a known grapevine regulator of the anthocyanin biosynthetic pathway (Kobayashi et al., 2002), as VvNAC60 target suggests a VvNAC60 role in processes like anthocyanin biosynthesis featured by grape berries at the onset of ripening. Another approach used to clarify NACs roles was to check the ability of VvNACs to fulfil the tomato NOR function. Preliminary results revealed that VvNAC03 and VvNAC60 could partially complement the nor mutation in tomato, establishing a partial ripening phenotype in fruits. Taken together, these findings suggest the ability of the selected VvNACs to affect the expression of genes involved in the regulatory network that controls the developmental shift to a mature phase in grapevine. This work has shed some light on the roles of these NACs in grapevine development, but further analysis must be conducted to fully elucidate the molecular machinery in this complex regulation system.
2017
"NAC transcription factors", "grapevine transformation", "master regulators", "vegetative-to-mature organ transition", "fruit ripening", "nor tomato mutant"
La vite (Vitis vinifera L.), una delle più coltivate piante da frutto, riveste notevole importanza economica in tutto il mondo. Poichè negli ultimi decenni la viticoltura sta subendo gli effetti del riscaldamento globale (Webb et al., 2007), è necessario mantenere una produzione di uva e vino di elevata qualità. Una delle maggiori sfide consiste nell’identificazione dei principali geni regolatori dello sviluppo della pianta di vite durante il ciclo vegetale annuale e, in particolare, della transizione dalla fase vegetativa a quella matura (detta véraison), durante la quale avvengono profonde modificazioni biochimiche, fisiologiche e trascrizionali. Grazie ad un'analisi di network di co-espressione sull’atlante del trascrittoma della vite e ad un dataset di dati trascrizionali di bacche (Massonnet, 2015; Palumbo et al., 2014; Fasoli et al., 2012), è stata identificata una nuova categoria di geni chiamata 'switch’; tali geni sono significativamente up-regolati durante la transizione di fase ed inversamente correlati a molti geni soppressi durante la fase matura. Tra questi, i fattori di trascrizione NAM/ATAF/CUC (NAC) rappresentano un’interessante famiglia genica dato il ruolo chiave in processi biologici come sviluppo e risposte allo stress in pianta (Jensen et al., 2014). Per la caratterizzazione funzionale cinque geni NAC sono stati selezionati come putativi principali regolatori della riprogrammazione del trascrittoma durante la maturazione della vite. VvNAC11, VvNAC13, VvNAC33 e VvNAC60 sono stati identificati come geni 'switch' dalla sopra citata analisi, mentre VvNAC03 come gene omologo a NOR (non-ripening) di pomodoro, uno dei principali regolatori della maturazione di tale frutto (Giovannoni, 2004; Giovannoni et al., 1995). I cinque NAC sono stati sovra-espressi transientemente in Vitis vinifera per ottenere una panoramica dei loro effetti primari sul trascrittoma. Sono poi state ottenute e caratterizzate dal punto di vista molecolare e fenotipico piante di vite stabilmente trasformate con VvNAC33 e VvNAC60. VvNAC33 sembra essere coinvolto nella regolazione negativa della fotosintesi poiché le foglie sovra-esprimenti tale gene contengono una minor quantità di clorofilla, mentre VvNAC60 provoca una ridotta crescita della pianta e una prematura lignificazione dello stelo rispetto ad una pianta controllo della stessa età. Questi risultati riflettono comportamenti tipici di piante in fase di maturazione e senescenza, sostenendo l’ipotesi di un ruolo fondamentale dei NAC nella transizione di fase in vite. Al fine di identificare i target che agiscono a valle dei NAC, sono state eseguite analisi microarray sulle foglie delle piante trasformate in modo transiente e stabile. In entrambe le over-espressioni è stata influenzata l’espressione di un'ampia gamma di processi cellulari tra cui, tra le categorie funzionali più rappresentate, vi sono trasporto, metabolismo secondario e attività dei fattori di trascrizione. L'identificazione di VvMYBA1, un noto regolatore della biosintesi degli anotciani in vite (Kobayashi et al., 2002), come target di VvNAC60 suggerisce un ruolo di tale NAC in processi tipici dell’inizio della maturazione. Un altro approccio utilizzato in questo lavoro è stato la complementazione funzionale del mutante nor di pomodoro con i NAC selezionati. Risultati preliminari hanno rivelato che VvNAC03 e VvNAC60 sembrano avere una funzione simile a NOR poichè riescono a maturare almeno esternamente. In conclusione, i risultati ottenuti in questo lavoro suggeriscono la capacità dei VvNAC selezionati di influenzare l'espressione di geni coinvolti nella regolazione che controlla lo sviluppo dalla fase vegeativa alla fase matura in vite. Questo lavoro ha inizato a far luce sul ruolo dei NAC nello sviluppo della vite, ma dovranno essere effettuate ulteriori analisi per ottenere una piena compresione del macchinario molecolare che regola questo complesso sistema di regolazione.
File in questo prodotto:
File Dimensione Formato  
PhD thesis_Erica D'Incà.pdf

Open Access dal 17/11/2018

Descrizione: MASTER REGULATORS OF THE VEGETATIVE-TO-MATURE ORGAN TRANSITION IN GRAPEVINE: THE ROLE OF NAC TRANSCRIPTION FACTORS
Tipologia: Tesi di dottorato
Licenza: Accesso ristretto
Dimensione 6.41 MB
Formato Adobe PDF
6.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/961366
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact