ABSTRACT L’ossido nitrico (NO) è una molecola ampiamente diffusa che regola vari aspetti della crescita della pianta, del suo sviluppo e delle risposte di stress. Diversi studi hanno dimostrato che l’accumulo di NO ed il suo signaling giocano un ruolo importante nella difesa delle piante contro i patogeni. In particolare l’NO gioca un ruolo cruciale nel mediare la risposta di difesa ipersensibile. Questo meccanismo di resistenza implica l’attivazione di una morte cellulare programmata al sito di infezione che ha come obiettivo quello di bloccare l’infezione e la diffusione del patogeno (Jones and Dangl, 2006). In questo contesto si è dimostrato che l’NO lavora in modo sinergico con il perossido di idrogeno per indurre la morte cellulare ipersensibile. Nonostante le molte ricerche su questa via di signaling, i meccanismi molecolari con cui agisce l’NO non sono ancora chiari. Per acquisire nuove conoscenze specifiche nella via di signaling dell’NO che regola l’attivazione della morte cellulare ipersensibile abbiamo ottimizzato e testato un sistema di fumigazione con NO che consente di trattare le piante con quantità controllate di questo gas. In questo lavoro abbiamo innanzitutto effettuato una ulteriore ottimizzazione di questo sistema per mettere a punto delle condizioni in grado di indurre la morte cellulare in modo uniforme e riproducibile in un numero maggiore di piante (320) di Arabidopsis thaliana di 4 settimane con lo scopo finale di incrementare il numero di mutanti testati. Quindi, utilizzando queste nuove condizioni abbiamo testato 39225 semi di Arabidopsis mutagenizzati con ESM (M2). Complessivamente l’analisi di questi mutanti e di quelli precedentemente testati (17,107) hanno permesso di recuperare complessivamente 30 mutanti che presentano un fenotipo riproducibile di almeno parziale compromissione nella risposta all’NO. Questi mutanti preselezionati sono quindi stati infettati anche col patogeno per confermare una possibile compromissione anche della morte cellulare ipersensibile indotta da patogeno. Di questi, 14 mutanti infatti hanno mostrato anche una compromissione di questa risposta, probabilmente quindi a causa di qualche alterazione nel signaling dell’NO. Questi candidati sono stati sottoposti anche ad ulteriori analisi genetiche per testare l’ereditarietà del fenotipo mutante e per confermare che, data la loro ereditarietà, rappresentano materiale adatto per poter effettuare l’identificazione della mutazione mediante un approccio di deep sequencing. Nello specifico l’ereditarietà è stata determinata nelle popolazioni F1 ed F2 ottenute mediante backcross. L’analisi fenotipica di queste popolazioni ha dimostrato che il fenotipo di uno dei candidati è dovuto ad una mutazione dominante e questo mutante è stato quindi escluso da ulteriori studi. Al momento le popolazioni BC1F2 e le analisi di segregazione in queste popolazioni sono state effettuate per tre dei 14 mutanti identificati. Inoltre test di allelismo tra sei dei mutanti selezionati hanno dimostrato che due mutanti erano allelici. Questi due mutanti condividono in realtà lo stesso evento di mutagenesi originale, dimostrando così l’affidabilità della procedura di screening. Con l’obiettivo di proporre una strategia per l’identificazione della mutazione causale mediante l’approccio di mapping by sequencing, pools di ricombinanti che mostrano resistenza sono stati generati e sequenziati con un sequenziatore NGS Illumina. Tuttavia il nostro primo tentativo di identificare la mutazione causale basato su sequenziamento di pools ottenuti in BC1F2 non ha fornito uno sbilanciamento nello SNP-Index pari alle attese (1) al sito della mutazione causale a causa probabilmente di una contaminazione da falsi positivi nel pool di sequenziamento. Tuttavia i risultati di questa analisi suggeriscono di utilizzare per la costruzione di pools per il sequenziamento ricombinanti propagati il cui fenotipo sia stato attentamente verificato in F3 per poter effettuare con successo l’identificazione della mutazione causale con questo approccio.
Nitric oxide (NO) is a widespread signalling molecule that regulates various aspects of plant growth, development and stress responses. Numerous studies have demonstrated NO accumulation and downstream NO signalling plays an important role in plant defence against pathogens. In particular NO plays a crucial role in mediating the hypersensitive disease resistance response (HR). This resistance mechanism includes the activation of a programmed cell death at the attempted sites of infection, aiming to restrict pathogen infection and spread (Jones and Dangl, 2006). NO was shown to work synergistically with hydrogen peroxide to trigger the HR-cell death. Despite extensive investigation on this signalling pathway, the molecular mechanism through which NO acts is still unclear. To gain further insights specifically into NO signaling network underlying the activation of HR-cell death, a NO fumigation system, which allows treating plants with a precise amount of NO gas concentration in air has been established in our laboratory and previously tested. An optimization of such system was then successfully applied here to establish conditions of NO treatment that activate a uniform and reproducible cell death program in a larger number (320) of 4-week-old Arabidopsis thaliana plants, with the final aim of improve the screening performance. Then by using this facility and newly established NO fumigation conditions we screened further 39225 M2 EMS mutagenized Arabidopsis thaliana. These, together with previously fumigated mutants, complexively allowed to rescue 30 mutants presenting a consistent impaired NO response phenotype. These pre-selected mutants were then infected by pathogen to confirm a possible alteration also in HR-cell death. Among these, 14 mutants were found to be impaired HR-cell death likely because of alterations related to NO-signalling. The candidates were then subjected to additional genetic analysis to test inheritance of the mutant phenotype and to confirm they were suitable for to the identification of the causal mutation through deep sequencing based strategies. The genetic inheritance of the mutant phenotype was determined through analysis in the backcross F1 and F2 progeny. Phenotypic evaluation of the BC1F1 progeny demonstrated that phenotype of one of the candidates is caused by a dominant mutation. Therefore, this candidate was excluded from further studies. So far, BC1F2 populations and segregation analysis in the F2 progeny have been performed for three of the 14 candidate mutants. Furthermore allelism among six selected mutants was checked which revealed two allelic mutants, which were however sharing the same original mutational event, thus strengthening the reliability of our screening procedure. In order to set a strategy for the identification of the causal mutation by the “mapping by sequencing” approach, sequencing pools of resistant BC1F2 recombinants were generated and sequenced by Illumina NGS. However, our first attempt to identify causal mutation based on bulked BC1F2 didn’t provide expected SNP index at putative causal mutation loci because of false positive contamination in the sequencing pool, suggesting that BC1F3 recombinants with a confirmed phenotype should be used, in our case, for the identification of the causal mutation through this approach.
IDENTIFICATION OF CANDIDATE GENES INVOLVED IN NITRIC OXIDE SIGNALLING DURING HYPERSENSITIVE-CELL DEATH
Imanifard, Zahra
2016-01-01
Abstract
Nitric oxide (NO) is a widespread signalling molecule that regulates various aspects of plant growth, development and stress responses. Numerous studies have demonstrated NO accumulation and downstream NO signalling plays an important role in plant defence against pathogens. In particular NO plays a crucial role in mediating the hypersensitive disease resistance response (HR). This resistance mechanism includes the activation of a programmed cell death at the attempted sites of infection, aiming to restrict pathogen infection and spread (Jones and Dangl, 2006). NO was shown to work synergistically with hydrogen peroxide to trigger the HR-cell death. Despite extensive investigation on this signalling pathway, the molecular mechanism through which NO acts is still unclear. To gain further insights specifically into NO signaling network underlying the activation of HR-cell death, a NO fumigation system, which allows treating plants with a precise amount of NO gas concentration in air has been established in our laboratory and previously tested. An optimization of such system was then successfully applied here to establish conditions of NO treatment that activate a uniform and reproducible cell death program in a larger number (320) of 4-week-old Arabidopsis thaliana plants, with the final aim of improve the screening performance. Then by using this facility and newly established NO fumigation conditions we screened further 39225 M2 EMS mutagenized Arabidopsis thaliana. These, together with previously fumigated mutants, complexively allowed to rescue 30 mutants presenting a consistent impaired NO response phenotype. These pre-selected mutants were then infected by pathogen to confirm a possible alteration also in HR-cell death. Among these, 14 mutants were found to be impaired HR-cell death likely because of alterations related to NO-signalling. The candidates were then subjected to additional genetic analysis to test inheritance of the mutant phenotype and to confirm they were suitable for to the identification of the causal mutation through deep sequencing based strategies. The genetic inheritance of the mutant phenotype was determined through analysis in the backcross F1 and F2 progeny. Phenotypic evaluation of the BC1F1 progeny demonstrated that phenotype of one of the candidates is caused by a dominant mutation. Therefore, this candidate was excluded from further studies. So far, BC1F2 populations and segregation analysis in the F2 progeny have been performed for three of the 14 candidate mutants. Furthermore allelism among six selected mutants was checked which revealed two allelic mutants, which were however sharing the same original mutational event, thus strengthening the reliability of our screening procedure. In order to set a strategy for the identification of the causal mutation by the “mapping by sequencing” approach, sequencing pools of resistant BC1F2 recombinants were generated and sequenced by Illumina NGS. However, our first attempt to identify causal mutation based on bulked BC1F2 didn’t provide expected SNP index at putative causal mutation loci because of false positive contamination in the sequencing pool, suggesting that BC1F3 recombinants with a confirmed phenotype should be used, in our case, for the identification of the causal mutation through this approach.File | Dimensione | Formato | |
---|---|---|---|
Doctoral thesis-Imanifard.Z.pdf
non disponibili
Tipologia:
Tesi di dottorato
Licenza:
Accesso ristretto
Dimensione
5.03 MB
Formato
Adobe PDF
|
5.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.