La Sclerosi Laterale Amiotrofica (SLA) è una malattia neurodegenerativa mortale che colpisce i motoneuroni superiori nella corteccia motoria e i motoneuroni inferiori nel tronco cerebrale e del midollo spinale.La diagnosi di SLA rimane ancora oggi una diagnosi ad esclusione di altre patologie perché non vi sono segni clinici patognomonici, soprattutto all’ esordio, nè test diagnostici specifici. La diagnosi viene quindi formulata dopo un’ accurato esame neurologico alla ricerca di segni di lesione, ma sarà poi solo la progressione della malattia e la comparsa di nuovi segni che confermerà la diagnosi nel tempo. Nella SLA, l'assenza di marcatori specifici per la malattia comporta un ritardo tra la comparsa della malattia e la diagnosi che può variare tra i 13 ei 18 mesi, precludendo un inizio precoce dei trattamenti neuroprotettivi.La scoperta delle mutazioni SOD1 legate alla SLA di origine eraditaria ha permesso di sviluppare modelli eziologici per la malattia. Grazie al modello animale SOD1(G93A), modalità di neuroimaging, tra cui la Risonanza Manetica (RM), possono essere utilizzate per identificare potenziali biomarcatori della patologia.Questo progetto di dottorato è diviso in due sezioni sperimentali.La prima parte del progetto ha l'obiettivo di identificare e validare biomarcatori RM in un modello sperimentale di SLA (topi SOD1(G93A)) durante la progressione della malattia e, sucessivamente, di monitorare l'efficacia di una terapia basata sulle cellule staminali.Studi recenti hanno suggerito che la malattia potrebbe iniziare nel muscolo scheletrico, piuttosto che nei motoneuroni. Per questo motivo, il nostro protocollo RM si focalizza sia sul cervello, che sugli arti posteriori degli animali; le immagini RM sono state acquisite a punti temporali corrispondenti al decorso della malattia (fase preclinica, insorgenza e la fase terminale). Immagini T2-pesate, mappe del T2 e le successive analisi con la tecnica Voxel Based Morphometry, hanno mostrato lesioni del tronco cerebrale nei topi a partire dalla comparsa della malattia. L’analisi RM degli arti posteriori ha riportato: riduzione del volume muscolare, alterazione dei parametri DTI (FA, MD e RD) e variazione nel rapporto tra intensità del segnale del muscolo e intensità del segnale del grasso.Testando l'efficacia di una terapia innovativa, attraverso l'evoluzione dei biomarker precedentemente definiti, abbiamo confermato l'efficacia della terapia cellulare nel rallentare il decorso clinico nel modello animale SOD1(G93A).Tuttavia, studi recenti hanno riportato che la maggior parte degli effetti terapeutici delle cellule staminali sono probabilmente duvuti a fattori solubili rilasciati in nanovescicole (esosomi). Per capire meglio come e dove gli esosomi esplicano il loro effetto terapeutico, si ha bisogno comprendere il loro meccanismo d’ azione e i loro bersagli molecolari/cellulari. La RM può essere utilizzata come metodo non invasivo per la visualizzazione degli esosomi e può fornire informzioni su dove gli esosomi esercitano la loro azione neuroportettiva.Nella seconda parte del progetto, noi proponiamo un nuovo approccio per marcare gli esosomi con nanoparticelle di ossido di ferro (USPIO), permettendo la loro individuazione attraverso immagini RM. Inoltre, questo nuovo metodo di labeling preserva le caratteristiche morfologiche e fisiologiche degli esosomi. In particolare, abbiamo dimostrato che marcando le cellule staminali con le USPIO prima dell’ estrazione degli esosomi, questi, una volta isolati, trattengono le nanoparticelle e possono essere visualizzati tramite RM, sia in vitro che in vivo.
Amyotrophic lateral sclerosis (ALS) is fatal neurodegenerative disorder affecting upper motor neurons in the motor cortex as well as lower motor neurons in the brain stem and spinal cord. In ALS, the absence of a disease marker has a negative consequence: the delay from onset of the disease to diagnosis can vary between 13 and 18 months precluding early initiation of neuroprotective treatments. The capability of Magnetic Resonance Imaging (MRI) in diagnosis of ALS has been recently addressed. The accessible, non-invasive and radiation-free characteristics of MRI make this technique highly practical as a biomarker tool. MRI has been used in ALS patients, but not during the pre-clinical phase, a stage currently inaccessible for human study in what is largely a sporadic disease. The discovery of SOD1 mutations linked with familial ALS has made it possible to develop aetiological models for ALS. Thanks to the SOD1(G93A) animal model, neuroimaging modalities can be used to identify potential biomarkers. This PhD project is divided in two experimental sections.The first section aimed to identify and validate MRI biomarkers in SOD1(G93A) animal model along the disease progression and to monitor the efficacy of stem cells-based therapy. Recent studies have suggested that the disease could initiate in skeletal muscle, rather than in the motor neurons. For this reason, our MRI protocol focused on brain and hind limb and SOD1(G93A) mice were scanned at time point corresponding to disease evolution (preclinical stage, onset and terminal stage). T2-weighted images, T2 map and the subsequent analysis with Voxel Based Morphometry technique, showed brainstem lesions in mice starting from the onset of the disease. In hind limb of SOD1(G93A) we found reduced muscular volume, alteration in Diffusion Tensor Imaging parameters (FA, MD and RD) and in muscle/fat signal intensity ratio. Testing the efficacy of innovative therapy, through the evolution of the previously defined biomarkers, we confirmed the efficacy of stem cells therapy in slowing down the clinical course in the SOD1(G93A) animal model.However, recent studies reported that most biological effects of stem cells are probably mediated by soluble factors released in nanovescicles (exosomes) which influence the surrounding cells. To better understand the action mechanisms and the molecular/cellular target of exosomes, we need elucidation of where exosomes explicate their therapeutic effect. In particular, MRI can be used as a noninvasive method for tracking exosomes in vivo and it can provide information about where exosomes exert their neuroprotective action. In the second section we propose a new approach to label exosomes with iron oxide nanoparticles that allows their detection by MRI preserving their morphology and physiological characteristic. In particular, we showed that by labeling stem cells with ultra-small superparamagnetic iron oxide nanoparticles before nanovesicles extraction, the isolated exosomes retain nanoparticles and can be visualized by MRI both in in vitro and in vivo condition.
MRI biomarkers of disease evolution and efficacy of stem cell therapy in the SOD1(G93A) experimental model of Amyotrophic Lateral Sclerosis
BUSATO, ALICE
2016-01-01
Abstract
Amyotrophic lateral sclerosis (ALS) is fatal neurodegenerative disorder affecting upper motor neurons in the motor cortex as well as lower motor neurons in the brain stem and spinal cord. In ALS, the absence of a disease marker has a negative consequence: the delay from onset of the disease to diagnosis can vary between 13 and 18 months precluding early initiation of neuroprotective treatments. The capability of Magnetic Resonance Imaging (MRI) in diagnosis of ALS has been recently addressed. The accessible, non-invasive and radiation-free characteristics of MRI make this technique highly practical as a biomarker tool. MRI has been used in ALS patients, but not during the pre-clinical phase, a stage currently inaccessible for human study in what is largely a sporadic disease. The discovery of SOD1 mutations linked with familial ALS has made it possible to develop aetiological models for ALS. Thanks to the SOD1(G93A) animal model, neuroimaging modalities can be used to identify potential biomarkers. This PhD project is divided in two experimental sections.The first section aimed to identify and validate MRI biomarkers in SOD1(G93A) animal model along the disease progression and to monitor the efficacy of stem cells-based therapy. Recent studies have suggested that the disease could initiate in skeletal muscle, rather than in the motor neurons. For this reason, our MRI protocol focused on brain and hind limb and SOD1(G93A) mice were scanned at time point corresponding to disease evolution (preclinical stage, onset and terminal stage). T2-weighted images, T2 map and the subsequent analysis with Voxel Based Morphometry technique, showed brainstem lesions in mice starting from the onset of the disease. In hind limb of SOD1(G93A) we found reduced muscular volume, alteration in Diffusion Tensor Imaging parameters (FA, MD and RD) and in muscle/fat signal intensity ratio. Testing the efficacy of innovative therapy, through the evolution of the previously defined biomarkers, we confirmed the efficacy of stem cells therapy in slowing down the clinical course in the SOD1(G93A) animal model.However, recent studies reported that most biological effects of stem cells are probably mediated by soluble factors released in nanovescicles (exosomes) which influence the surrounding cells. To better understand the action mechanisms and the molecular/cellular target of exosomes, we need elucidation of where exosomes explicate their therapeutic effect. In particular, MRI can be used as a noninvasive method for tracking exosomes in vivo and it can provide information about where exosomes exert their neuroprotective action. In the second section we propose a new approach to label exosomes with iron oxide nanoparticles that allows their detection by MRI preserving their morphology and physiological characteristic. In particular, we showed that by labeling stem cells with ultra-small superparamagnetic iron oxide nanoparticles before nanovesicles extraction, the isolated exosomes retain nanoparticles and can be visualized by MRI both in in vitro and in vivo condition.File | Dimensione | Formato | |
---|---|---|---|
PhD_thesis_Busato.pdf
non disponibili
Descrizione: tesi di dottorato
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
2.45 MB
Formato
Adobe PDF
|
2.45 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.