Introduzione. Il prolasso isolato posteriore è la disfunzione patologica più frequente del prolasso mitralico degenerativo; tecniche chirurgiche conservative, consolidate e basate sull’impianto di corde artificiali, e strategie percutanee sono oggi disponibili. La plastica neocordale è meno invasiva delle resezione mitralica e consente di “rispettare anziché resecare” il lembo malato; tuttavia, al fine di ottenere risultati ripetibili e standarizzati, richiede notevole esperienza per la selezione intra-operatoria della configurazione neocordale più appropriata e la definizione della lunghezza delle suture. Il dispositivo Mitraclip® è l’unico sistema percutaneo oggi approvato per uso clinico ed efficace in alcuni scenari. Nonostante la sua semplicità concettuale, la procedura di impianto è ancora complessa: richiede operatori esperti, uno staff clinico di alto livello, ed una impegnativa curva di apprendimento. Metodi. Una strategia di modellazione paziente-specifica è stata sviluppata per la valutazione del prolasso mitralico a partire da immagini in vivo di risonanza magnetica cardiaca (cMRI). Successivamente, modelli agli elementi finiti (FE) sono stati simulati al fine di confrontare quantitativamente, per la prima volta, gli effetti biomeccanici di un ampio spettro di differenti tecniche di riparazione cordale per il prolasso isolato del lembo mitralico posteriore, focalizzandosi sull’impatto della precisione chirurgica, durante il settaggio della lunghezza neocordale, sulla biomeccanica valvolare post-operatoria. A tal fine, immagini rotazionali cMRI cine in asse lungo sono state segmentate per 15 pazienti affetti da prolasso mitralico degenerativo e 10 soggetti sani consentendo, tramite post-processing dedicato, la valutazione di numerosi parametri morfologici e funzionali. Il movimento dell’annulus e dei muscoli papillari (PM) è stato quantificato ed integrato con misure intraoperatorie al fine di localizzare la regione prolassante e valutarne l’estensione. Modelli FE paziente-specifici sono stati derivati per quattro pazienti, riproducendo la configurazione di fine diastole della valvola mitralica, condizioni cinematiche realistiche dell’annulus e dei muscoli papillari, includendo le proprietà meccaniche iperelastiche ed anisotrope dei tessuti ed la risposta non lineare delle corde artificiali. Le simulazioni sono state effettuate mediante il solutore commerciale ABAQUS/Explicit. I risultati preliminari hanno riprodotto sia la configurazione sistolica preoperatoria di prolasso mitralico sia il modello valvolare fisiologico con un apparato cordale intatto caratterizzato da una distanza fisiologica ed “ideale” tra l’inserzione della corda nativa rotta ed il corrispondente muscolo papillare. Un set-up di lunghezza cordale “ideale” e numerosi set-up “sub-ottimali” sono stati simulati considerando differenti procedure di impianto: dalla riparazione con singola corda fino all’utilizzo di configurazioni a “loop” pre-configurate. Tutte le configurazioni sub-ottimali ristabiliscono adeguati livelli di competenza valvolare ma differiscono nella lunghezza neocordale di ± 2mm rispetto alle corrispondenti configurazioni “ideali”. Infine, un innovativo approccio numerico è stato proposto relativamente alla recente tecnica percutanea della Mitraclip® al fine di simulare la biomeccanica della valvola mitrale durante l’intero ciclo cardiaco, prima e dopo l’impianto del dispositivo, valutando l’impatto biomeccanico della procedura sull’intero apparato mitralico. Risultati. I pazienti affetti da prolasso mitralico hanno mostrato differenze significative (p<0.05), rispetto ai soggetti sani, in termini di perimetro ed area annulare, altezza e volume mitralico di “billowing”. La cinematica dei muscoli papillari ed il movimento longitudinale dell’annulus verso l’apice ventricolare sono rimasti comparabili. I modelli FE hanno realisticamente riprodotto le alterazioni dovute al prolasso mitralico, risultando comparabili ai dati cMRI acquisiti, ed ha consentito di quantificare la biomeccanica mitralica associata alle differenti condizioni post-operatorie. Le configurazioni cordali “ideali” testate hanno efficacemente risolto il prolasso mitralico fornendo livelli soddisfacenti di area di coaptazione seppur in presenza di effetti dipendenti dalla specifica tecnica considerata. Infatti, l’impianto di corde multiple ha migliorato il riposizionamento della regione prolassante del lembo: la tensione cordale, nella regione prolassante, è stata parzialmente trasferita dalle corde native intatte alle neocorde, migliorando la ridistribuzione degli sforzi sul lembo. Nella plastica “sub-ottimale”, nonostante l’assenza di rigurgito mitralico residuo, una sutura con lunghezza sub-ottimale di alcuni millimetri ha marcati effetti sulla biomeccanica valvolare. Una corda singola, 2mm più corta, ha incrementato drammaticamente lo sforzo sul lembo e la tensione della sutura. Nelle riparazioni a doppia corda, in presenza di una neocorda 2mm più lunga, l’atra era completamente sovraccaricata mentre effetti opposti si sono ottenuti con una corda 2mm più corta. Alterando la lunghezza di una sola corda, nella configurazione a “loop”, si è rilevato un sensibile aumento dello sforzo sul lembo con il carico interamente scaricato su una singola corda. L’impianto del dispositivo Mitraclip® ha migliorato significativamente la coaptazione sistolica senza indurre alterazioni considerevoli agli sforzi sistolici di picco. Tuttavia, l’area diastolica dell’orifizio valvolare si è ridotta considerevolmente e gli sforzi diastolici sono risultati confrontabili, seppur minori, a quelli sistolici. Conclusioni. Il presente lavoro ha mostrato la dipendenza della plastica neocordale della valvola mitralica dalla specifica lunghezza intraoperatoria delle suture artificiali. A tal fine, i modelli numerici paziente-specifici sono in grado: i) spiegare gli inconvenienti biomeccanici dovuti ad un settaggio sub-ottimale della lunghezza cordale; ii) chiarire la loro relazione con gli aspetti paziente-specifici e le lunghezze delle neocorde; iii) aprire la strada ad una chirurgia ancor più efficace e riproducibile. All’interno del singolo scenario clinico è teoricamente possibile definire una tecnica neocordale ottimale valutando il rilascio di tensione sulle neocorde, il grado di ridistribuzione dello sforzo sui lembi valvolari, ed il picco si sforzo lungo il margine libero del lembo. I cambiamenti postoperatori rilevati, data l’impossibilità di valutare in sede chirurgica le variabili biomeccaniche considerate, risultano utili per approfondire le implicazioni biomeccaniche della riparazione mitralica. Inoltre, indicazioni cliniche rilevanti possono essere ottenute applicando questo approccio alla valutazione del dispositivo Mitraclip®: si sono quantificate variabili biomeccaniche di interesse all’interno di un realistico scenario clinico, fornendo un’analisi esaustiva degli effetti biomeccanici del dispositivo sull’apparato mitralico, combinando per la prima volta le informazioni morfologiche fornite da cMRI con una descrizione dettagliata delle proprietà meccaniche dei tessuti mitralici. In conclusione, il presente lavoro rappresenta il primo tentativo verso una valutazione virtuale e paziente-specifica della riparazione della valvola mitrale: l’approccio FE qui proposto può essere utile nel quantificare l’efficacia delle differenti strategie di riparazione mitralica e consentire, se ulteriormente consolidato, un più ampio approfondimento dei potenziali meccanismi di ricorrenza del rigurgito mitralico, promuovendo così un costante processo paziente-specifico di ottimizzazione delle tecniche di riparazione cordale. Il presente approccio modellistico può infine essere esteso all’analisi degli scenari clinici che sono attualmente più critici per l’impianto percutaneo di Mitraclip® come, per esempio, il rigurgito mitralico di tipo funzionale e la dilatazione annulare, agevolando così la ricerca di possibili soluzioni.
Background. Isolated posterior leaflet prolapse is the most frequent pathologic dysfunction of degenerative mitral valve (MV) prolapse; well-established and conservative surgical techniques, based on artificial neochordae implantation, are nowadays available as well as minimally invasive and percutaneous strategies can be adopted. On the one hand, neochordoplasty is less invasive than MV resection and allows for “respecting rather than resecting” the diseased MV leaflet; however, a long-standing experience is required to intraoperatively select the appropriate neochordal configuration and precisely assess neochordal length. Hence, the identification of sound criteria for the selection of the appropriate solution is mandatory to achieve repeatable and standardized results. On the other hand, the Mitraclip® device is the only percutaneous system for edge-to-edge currently approved for clinical use in humans and feasible as a standalone approach in some clinical scenarios. Despite its conceptual ease, the procedure of implantation is still complex requiring skilled operators, a high-level overall clinical staff and a demanding learning curve to efficiently perform the procedure. Image-based framework. A patient-specific modeling strategy was developed for the assessment of MV prolapse from in vivo cardiac magnetic resonance imaging (cMRI). Subsequently, finite element (FE) models were run to quantitatively compare, for the first time and on a patient-specific basis, the biomechanical effects of a broad spectrum of different neochordal implantation techniques for the repair of isolated posterior MV prolapse, focusing on the impact of surgical precision in setting neochordal length on postoperative MV biomechanics. At this aim, segmentation of rotational cine long-axis cMRI planes was performed on 15 patients with degenerative MV prolapse and on 10 healthy subjects and ad hoc post-processing allowed to assess several morphological and functional MV parameters. The motion of annulus and papillary muscles (PM) was quantified, and integrated with intraoperative surgical details to assess location and extent of the prolapsing region. Four patient-specific and FE structural MV models were derived, reproducing the end-diastolic MV configuration, realistic annular and PMs kinematic boundary conditions, and including hyperelastic and anisotropic mechanical properties of tissues and non-linear response of artificial neochordae. Simulations were run with the commercial solver ABAQUS/Explicit. Preliminary FE results reproduced both the preoperative systolic prolapsing MV configuration and the physiological model with an intact chordal apparatus, i.e. providing the physiological “ideal” distance between the insertion of the ruptured chordae and the corresponding papillary tip. An “ideal” setting and several “sub-optimal” though realistic settings of neochordal lengths were then simulated on different neochordal procedures ranging from single neochorda to “premeasured” loop configurations. All “sub-optimal” configurations re-established adequate valvular competence but differed in millimetric neochordal lengths on a range of ± 2mm, compared to the corresponding “ideal” repair. Finally, a novel computational approach to the most recent Mitraclip® percutaneous technique was proposed to simulate MV biomechanics, throughout the entire cardiac cycle, before and after the device implantation, assessing the biomechanical impact of the procedure on MV apparatus. Finite element evidences. Significant changes (p<0.05) were noticed in prolapsing patients, with respect to healthy subjects, in terms of mitral annular perimeter and area, MV billowing height and volume. PMs kinematics and MV longitudinal apically displacement remained comparable. Image-based FE models reliably reproduced MV prolapse alterations and well compared to ground truth from cMRI images. Also, FE modelling strategy proved able to quantify MV biomechanics associated to post-surgical conditions. Tested “ideal” neochordal configurations effectively fixed MV prolapse with satisfactory levels of coaptation area although the outcomes of MV repair proved to be technique-dependent. Indeed, implantation of multiple neochordae improved the repositioning of the prolapsing region: chordal tension of the prolapsing region was partially transferred from the intact native chordae to the artificial neochordae, thus improving mechanical stress distribution on the posterior MV leaflet. In “sub-optimal” MV plasty, despite absence of residual regurgitation, a millimetric sub-optimal suture length markedly impacted on MV biomechanics. A 2 mm-shorter single neochorda dramatically increased mechanical leaflet stress and neochordal tension. In double neochordal plasty, if a neochorda was 2mm-longer, the other neochorda was overloaded whereas opposite results occurred with a 2mm-shorter neochorda, both resulting at the end in asymmetric load redistribution. In neochordal loop configuration, when only the length of one neochorda was altered, a notable increase in leaflet stresses was obtained with load entirely settled on a single suture. Mitraclip® implantation significantly improved systolic leaflets coaptation, without inducing major alterations in systolic peak stresses. However, diastolic orifice area markedly decreased and leaflets diastolic stresses became comparable, although lower, to systolic ones. Conclusions. The present work clearly showed that mitral neochordoplasty largely depends on the intraoperative assessment of the appropriate length of artificial sutures. For this purpose, patient-specific numerical models can: i) explain the biomechanical drawbacks due to a “sub-optimal” millimetric tuning of the suture length, ii) elucidate their relationship with patient-specific features and neochordal suture lengths, and iii) pave the way to a more reproducible and effective surgery. According to FE results, it is possible to define in the single clinical scenario a theoretical patient-specific “gold standard” neochordal technique assessing the relief of tension on the native chordae, the degree of stress redistribution on MV leaflets, and peak mechanical stresses observed along the leaflet free margin. However, since these biomechanical variables are not directly measureable by surgeons, postoperative changes in MV biomechanics assessed with cMRI-derived FE models can represent a valuable background to deepen the biomechanical implications of MV repair. Moreover, clinically relevant indications were obtained applying the developed modeling FE approach to the analysis of Mitraclip® device: this allowed for computing biomechanical variables of clinical interest with reference to a real world clinical scenario and providing a rather exhaustive analysis of the biomechanical effects of the Mitraclip® device on MV apparatus, combining for the first time the morphological information provided by cMRI with a reasonably detailed description of tissues mechanical properties and boundary kinematic constraints. In conclusion, the present work represents the first effort towards a virtual patient-specific assessment of MV repair: the FE approach herein proposed may be useful in order to quantitatively assess the efficacy of MV repair strategies and, if further tested with longitudinal studies, provide a deeper insight into the potential mechanisms of recurrent mitral regurgitation, thus promoting an on-going patient-specific optimization of neochordal techniques. The modeling FE approach may also be expanded to analyze clinical scenarios that are currently critical for Mitraclip® implantation, e.g. functional mitral regurgitation and annular dilation, helping the search for possible solutions.
An image-based framework for the biomechanical analysis of mitral valve prolapse repair
Sturla, Francesco
2015-01-01
Abstract
Background. Isolated posterior leaflet prolapse is the most frequent pathologic dysfunction of degenerative mitral valve (MV) prolapse; well-established and conservative surgical techniques, based on artificial neochordae implantation, are nowadays available as well as minimally invasive and percutaneous strategies can be adopted. On the one hand, neochordoplasty is less invasive than MV resection and allows for “respecting rather than resecting” the diseased MV leaflet; however, a long-standing experience is required to intraoperatively select the appropriate neochordal configuration and precisely assess neochordal length. Hence, the identification of sound criteria for the selection of the appropriate solution is mandatory to achieve repeatable and standardized results. On the other hand, the Mitraclip® device is the only percutaneous system for edge-to-edge currently approved for clinical use in humans and feasible as a standalone approach in some clinical scenarios. Despite its conceptual ease, the procedure of implantation is still complex requiring skilled operators, a high-level overall clinical staff and a demanding learning curve to efficiently perform the procedure. Image-based framework. A patient-specific modeling strategy was developed for the assessment of MV prolapse from in vivo cardiac magnetic resonance imaging (cMRI). Subsequently, finite element (FE) models were run to quantitatively compare, for the first time and on a patient-specific basis, the biomechanical effects of a broad spectrum of different neochordal implantation techniques for the repair of isolated posterior MV prolapse, focusing on the impact of surgical precision in setting neochordal length on postoperative MV biomechanics. At this aim, segmentation of rotational cine long-axis cMRI planes was performed on 15 patients with degenerative MV prolapse and on 10 healthy subjects and ad hoc post-processing allowed to assess several morphological and functional MV parameters. The motion of annulus and papillary muscles (PM) was quantified, and integrated with intraoperative surgical details to assess location and extent of the prolapsing region. Four patient-specific and FE structural MV models were derived, reproducing the end-diastolic MV configuration, realistic annular and PMs kinematic boundary conditions, and including hyperelastic and anisotropic mechanical properties of tissues and non-linear response of artificial neochordae. Simulations were run with the commercial solver ABAQUS/Explicit. Preliminary FE results reproduced both the preoperative systolic prolapsing MV configuration and the physiological model with an intact chordal apparatus, i.e. providing the physiological “ideal” distance between the insertion of the ruptured chordae and the corresponding papillary tip. An “ideal” setting and several “sub-optimal” though realistic settings of neochordal lengths were then simulated on different neochordal procedures ranging from single neochorda to “premeasured” loop configurations. All “sub-optimal” configurations re-established adequate valvular competence but differed in millimetric neochordal lengths on a range of ± 2mm, compared to the corresponding “ideal” repair. Finally, a novel computational approach to the most recent Mitraclip® percutaneous technique was proposed to simulate MV biomechanics, throughout the entire cardiac cycle, before and after the device implantation, assessing the biomechanical impact of the procedure on MV apparatus. Finite element evidences. Significant changes (p<0.05) were noticed in prolapsing patients, with respect to healthy subjects, in terms of mitral annular perimeter and area, MV billowing height and volume. PMs kinematics and MV longitudinal apically displacement remained comparable. Image-based FE models reliably reproduced MV prolapse alterations and well compared to ground truth from cMRI images. Also, FE modelling strategy proved able to quantify MV biomechanics associated to post-surgical conditions. Tested “ideal” neochordal configurations effectively fixed MV prolapse with satisfactory levels of coaptation area although the outcomes of MV repair proved to be technique-dependent. Indeed, implantation of multiple neochordae improved the repositioning of the prolapsing region: chordal tension of the prolapsing region was partially transferred from the intact native chordae to the artificial neochordae, thus improving mechanical stress distribution on the posterior MV leaflet. In “sub-optimal” MV plasty, despite absence of residual regurgitation, a millimetric sub-optimal suture length markedly impacted on MV biomechanics. A 2 mm-shorter single neochorda dramatically increased mechanical leaflet stress and neochordal tension. In double neochordal plasty, if a neochorda was 2mm-longer, the other neochorda was overloaded whereas opposite results occurred with a 2mm-shorter neochorda, both resulting at the end in asymmetric load redistribution. In neochordal loop configuration, when only the length of one neochorda was altered, a notable increase in leaflet stresses was obtained with load entirely settled on a single suture. Mitraclip® implantation significantly improved systolic leaflets coaptation, without inducing major alterations in systolic peak stresses. However, diastolic orifice area markedly decreased and leaflets diastolic stresses became comparable, although lower, to systolic ones. Conclusions. The present work clearly showed that mitral neochordoplasty largely depends on the intraoperative assessment of the appropriate length of artificial sutures. For this purpose, patient-specific numerical models can: i) explain the biomechanical drawbacks due to a “sub-optimal” millimetric tuning of the suture length, ii) elucidate their relationship with patient-specific features and neochordal suture lengths, and iii) pave the way to a more reproducible and effective surgery. According to FE results, it is possible to define in the single clinical scenario a theoretical patient-specific “gold standard” neochordal technique assessing the relief of tension on the native chordae, the degree of stress redistribution on MV leaflets, and peak mechanical stresses observed along the leaflet free margin. However, since these biomechanical variables are not directly measureable by surgeons, postoperative changes in MV biomechanics assessed with cMRI-derived FE models can represent a valuable background to deepen the biomechanical implications of MV repair. Moreover, clinically relevant indications were obtained applying the developed modeling FE approach to the analysis of Mitraclip® device: this allowed for computing biomechanical variables of clinical interest with reference to a real world clinical scenario and providing a rather exhaustive analysis of the biomechanical effects of the Mitraclip® device on MV apparatus, combining for the first time the morphological information provided by cMRI with a reasonably detailed description of tissues mechanical properties and boundary kinematic constraints. In conclusion, the present work represents the first effort towards a virtual patient-specific assessment of MV repair: the FE approach herein proposed may be useful in order to quantitatively assess the efficacy of MV repair strategies and, if further tested with longitudinal studies, provide a deeper insight into the potential mechanisms of recurrent mitral regurgitation, thus promoting an on-going patient-specific optimization of neochordal techniques. The modeling FE approach may also be expanded to analyze clinical scenarios that are currently critical for Mitraclip® implantation, e.g. functional mitral regurgitation and annular dilation, helping the search for possible solutions.File | Dimensione | Formato | |
---|---|---|---|
STURLA_PhD_thesis.pdf
non disponibili
Descrizione: Tesi di Dottorato - Elaborato finale riassuntivo dell'intera attività di ricerca svolta
Tipologia:
Tesi di dottorato
Licenza:
Dominio pubblico
Dimensione
12.69 MB
Formato
Adobe PDF
|
12.69 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.