Notevoli progressi sono stati compiuti negli ultimi anni nel campo della nanomedicina. In particolare, l'uso di nanoparticelle (NP) per approcci diagnostici e terapeutici volto al trattamento di malattie cerebrali ha suscitato notevole interesse. Tecniche che utilizzano le NP come veicoli per il trasporto mirato di farmaci al cervello attraverso la barriera emato-encefalica potrebbero fornire alternative rispetto alle terapie convenzionali. Inoltre le NP potrebbero essere utilizzate per il trasporto intracerebrale diretto di farmaci, un approccio che, seppur invasivo, potrebbe essere applicato a gravi malattie neurologiche, soprattutto in vista del recente e crescente utilizzo della neurochirurgia. Lo scopo di questa ricerca mira al trasporto attraverso la barriera emato-encefalica di un farmaco utilizzato per curare una grave infezione parassitaria del cervello; il progetto sperimentale si è incentrato sui seguenti steps: 1) valutare in vitro degli effetti vitali di diverse NP in una linea cellulare di motoneuroni e in cellule dendritiche umane, coinvolte nelle risposte immunitaria, 2) testare il passaggio delle stesse NP attraverso la barriera emato-encefalica dopo iniezione sistemica endovenosa; 3) valutare, a livello molecolare e cellulare la risposta infiammatoria del parenchima cerebrale in seguito a somministrazione intracerebrale di diverse NP, e valutarne gli effetti neurotossici. Nella prima parte del progetto di dottorato sono stati condotti esperimenti in vitro ed in vivo con NP metalliche e polimeriche. Le NP metalliche hanno indotto una lieve risposta delle cellule in coltura dopo poco tempo, mentre a intervalli di tempo più lunghi, le NP si accumulano nelle cellule, probabilmente perché le funzioni cellulari e la vitalità non sono state alterate. Le NP polimeriche sono stati funzionalizzate con un peptide specifico per verificare se questo fosse in grado di aumentare il passaggio nel cervello. Studi in vitro hanno dimostrato che queste NP non causano citotossicità o attivazione della risposta immunitaria alle dosi e ai tempi analizzati, indicando il loro potenziale utilizzo come veicoli per il trasporto di farmaci. Lo studio sperimentale in vivo, eseguito in topi adulti, aveva lo scopo di verificare se queste NP potessero raggiungere il parenchima cerebrale dal flusso sanguigno e la risposta delle cellule gliali. I risultati hanno dimostrato che le NP metalliche si accumulano prevalentemente in organi periferici come fegato e milza, dopo iniezione endovenosa, tuttavia sono state individuate anche nel cervello, seppur in quantità limitata. Si è rilevata anche una lieve attivazione delle cellule gliali mediante immufenotipizzazione. Nella seconda parte del progetto di dottorato, NP ampiamente note e studiate come liposomi e nanomateriali innovativi a base di carbonio sono stati iniettati direttamente nel cervello di topo; questo esperimento era volto a determinare se i nanomateriali iniettati fossero in grado di indurre cambiamenti di espressione genica che fanno parte della risposta infiammatoria cerebrale, e cellulari (morte neuronale e attivazione delle cellule gliali) dopo diversi intervalli di tempo. I nanomateriali a base di carbonio, confrontati con i liposomi, hanno indotto una debole e locale risposta infiammatoria. Sulla base di queste osservazioni, le NP polimeriche funzionalizzate e i nanomateriali di carbonio potrebbero essere dei buoni candidati per la veicolazione di farmaci nel sistema nervoso centrale. Inoltre, per le caratteristiche di biocompatibilità e biodegradabilità, oltre alla possibilità di aumentare il passaggio della barriera mediante funzionalizzazione con ligandi specifici, le NP polimeriche potrebbero essere più adatte per la veicolazione cerebrale mediante somministrazione periferica.
Remarkable progress has been achieved in the last years in the use of nanometric systems in biomedicine. In particular, the use of nanoparticles (NPs) for diagnostic and therapeutic approaches to brain diseases has raised considerable attention. Nanotechnological approaches exploiting NPs as carriers for targeted brain delivery across the blood-brain barrier could thus provide alternatives to conventional therapies. In addition, NPs could be of use for the intracerebral delivery of drugs, an approach which, though invasive, could be applicable to severe neurological diseases, especially in view of the recent, increasing use of stereotaxic neurosurgery. Stemming from the search to transport across the blood-brain barrier a drug used to cure a severe parasitic brain infection, the present experimental project focused on i) the in vitro evaluation of viability effects of different NPs in a motor neuron cell line, as model of neuronal interaction and in human dendritic cells, involved in the immune responses, ii) testing the penetration in the brain parenchyma of the same NPs after systemic injection; iii) assessing, at the molecular and cellular levels the inflammatory response of the brain parenchyma to the intracerebral administration of a variety of NPs, and its neurotoxic effects. In the first part of the doctoral project, in vitro and in vivo studies were performed with metal-based NPs and polymer-based NPs. Metallic NPs showed a mild in vitro reaction after short time, while at longer time intervals, NPs accumulated in the cells, probably due to cell functions and viability that were not altered. Polymeric NPs were functionalized to verify whether this could increase brain targeting. In vitro studies assessed that these NPs did not cause cytotoxicity or immune response activation, indicating their potential use as drug delivery carriers. The in vivo experimental study, performed in adult mice, was aimed at verifying whether these NPs can reach the brain parenchyma from the blood stream and the response of glial cells. The results indicated that metal-based NPs accumulated mainly in peripheral organs (liver and spleen) after iv injection, but they were also detected, though in very limited amounts, in the brain parenchyma. A mild activation of glial cells was detected by immunophenotyping. In the second part of the doctoral project, well-known soft liposomes and novel hard carbon-based nanomaterials were injected directly in mouse brain. This paradigm was used to determine whether the nanomaterials induced, at different time intervals, gene expression changes which are part of the brain inflammatory response, and, at the cellular level, neuronal cell death and glial cell activation. Carbon-based nanomaterials elicited a weak and local inflammatory response in comparison with liposomes. Based on these observations, functionalized polymer-based NPs and carbon nanomaterials could represent candidate nanotools for intracerebral drug delivery systems. Due to their properties of biodegradability and biocompatibility, together with the possibility to increase brain targeting with specific ligands, functionalized polymeric NPs could be better suited for brain targeting by peripheral administration.
Testing nanoparticles for brain drug delivery
Portioli, Corinne
2015-01-01
Abstract
Remarkable progress has been achieved in the last years in the use of nanometric systems in biomedicine. In particular, the use of nanoparticles (NPs) for diagnostic and therapeutic approaches to brain diseases has raised considerable attention. Nanotechnological approaches exploiting NPs as carriers for targeted brain delivery across the blood-brain barrier could thus provide alternatives to conventional therapies. In addition, NPs could be of use for the intracerebral delivery of drugs, an approach which, though invasive, could be applicable to severe neurological diseases, especially in view of the recent, increasing use of stereotaxic neurosurgery. Stemming from the search to transport across the blood-brain barrier a drug used to cure a severe parasitic brain infection, the present experimental project focused on i) the in vitro evaluation of viability effects of different NPs in a motor neuron cell line, as model of neuronal interaction and in human dendritic cells, involved in the immune responses, ii) testing the penetration in the brain parenchyma of the same NPs after systemic injection; iii) assessing, at the molecular and cellular levels the inflammatory response of the brain parenchyma to the intracerebral administration of a variety of NPs, and its neurotoxic effects. In the first part of the doctoral project, in vitro and in vivo studies were performed with metal-based NPs and polymer-based NPs. Metallic NPs showed a mild in vitro reaction after short time, while at longer time intervals, NPs accumulated in the cells, probably due to cell functions and viability that were not altered. Polymeric NPs were functionalized to verify whether this could increase brain targeting. In vitro studies assessed that these NPs did not cause cytotoxicity or immune response activation, indicating their potential use as drug delivery carriers. The in vivo experimental study, performed in adult mice, was aimed at verifying whether these NPs can reach the brain parenchyma from the blood stream and the response of glial cells. The results indicated that metal-based NPs accumulated mainly in peripheral organs (liver and spleen) after iv injection, but they were also detected, though in very limited amounts, in the brain parenchyma. A mild activation of glial cells was detected by immunophenotyping. In the second part of the doctoral project, well-known soft liposomes and novel hard carbon-based nanomaterials were injected directly in mouse brain. This paradigm was used to determine whether the nanomaterials induced, at different time intervals, gene expression changes which are part of the brain inflammatory response, and, at the cellular level, neuronal cell death and glial cell activation. Carbon-based nanomaterials elicited a weak and local inflammatory response in comparison with liposomes. Based on these observations, functionalized polymer-based NPs and carbon nanomaterials could represent candidate nanotools for intracerebral drug delivery systems. Due to their properties of biodegradability and biocompatibility, together with the possibility to increase brain targeting with specific ligands, functionalized polymeric NPs could be better suited for brain targeting by peripheral administration.File | Dimensione | Formato | |
---|---|---|---|
CorinnePortioli_PhD_Neuroscience_Thesis_2015.pdf
non disponibili
Tipologia:
Tesi di dottorato
Licenza:
Accesso ristretto
Dimensione
6.4 MB
Formato
Adobe PDF
|
6.4 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.