Introduzione La tecnica di duble poling (DP) ha recentemente assunto una crescente importanza durante le gare di sci di fondo in tecnica classica, divenendo la tecnica dominante o esclusiva durante alcune tipologie di gara. Il DP è un tipo di locomozione molto particolare, poiché le azioni propulsive vengono trasmesse al suolo attraverso i bastoncini, grazie ad azioni di spinta sinergiche di arti superiori e tronco. L’obiettivo principale di questo progetto è quello di verificare se gli sciatori di fondo utilizzino strategie biomeccaniche per facilitare o aumentare l’impiego delle forze di spinta e l’economicità della locomozione, o per fronteggiare l’insorgenza della fatica. Per soddisfare tali proposte, è stata eseguita un’analisi integrata della tecnica di DP, includendo valutazione metaboliche, biomeccaniche ed elettromiografiche di tale locomozione. Studio 1 L’obiettivo del primo studio è stato una valutazione delle relazioni esistenti tra costo energetico e spostamento del centro di massa (COM) durante il DP. Otto sciatori di alto livelli (HLG) e otto di livello regionale (RLG) hanno eseguito una prova sottomassimale in DP, sciando con ski roll per 5 minuti su treadmill a 14 km•h-1 e 2° di pendenza. Le variabili analizzate sono state il costo energetico (ECDP), il range di spostamento verticale del COM, l’inclinazione del corpo (θ, ovvero l’angolo esistente tra la linea verticale e la linea passante per il COM ed un punto fisso identificato a livello dei piedi) ed il lavoro meccanico associato al movimento del COM. Inoltre, sono state misurate la cinematica articolare e dei bastoncini, le forze di spinta e la tempistica del ciclo di movimento. Una forward multiple regression analysis é stata eseguita per identificare quali parametri relativi al movimento del COM possono predire il ECDP. HLG hanno mostrato un minor ECDP rispetto a RLG (3.37 ± 0.16 vs. 4.83 ± 0.57 J•m-1•kg-1), un minor spostamento verticale del COM ed un minor lavoro meccanico. In HLG, θ durante la prima parte della fase di spinta è stata maggiore, l’inclinazione dei bastoni elevata, le forze di spinta maggiorate e la durata del ciclo più lunga. Considerando tutti gli sciatori, il massimo valore di θ (θmax) ed il minimo valore di spostamento verticale del COM sono risultati prenditori significativi di ECDP (AdjR2 = 0.734; P < 0.001). Inoltre, θmax é risultato positivamente correlate con gli integrali di forza di spinta e con la durata del ciclo. Durante il DP, un movimento meccanicamente vantaggioso del COM nelle direzioni verticale e antero-posteriore gioca un ruolo importante nella determinazione del range di spostamento verticale del COM, dell’inclinazione dei bastoni, della generazione delle forze di spinta e della durata del ciclo, influenzando ultimamente il costo energetico della locomozione. Studio 2 L’obiettivo del secondo studio é stato una valutazione delle modificazioni biomeccaniche nel gesto di DP che si verificano dopo un esercizio specifico ad alta intensità. Otto sciatori di alto livello hanno eseguito una prova sottomassimale di 5 minuti (20 km•h-1 e 1° di pendenza) prima (PRE) e dopo (POST) un test massimale ad esaurimento in DP, utilizzando ski roll su treadmill. Sono stati considerati i parameteri metabolici, lo spostamento verticale del COM, l’inclinazione del corpo (θ), la cinematica articolare e dei bastoncini, le forze di spinta e la tempistica del ciclo. Inoltre, è stata misurata la fatica muscolare nei muscoli triceps brachii, latissimus dorsi and teres major, considerando l’indice di fatica proposto da Dimitrov (FInms5) durante segmenti specifici di segnale elettromiografico, registrati durante le fasi di spinta. Il progressivo aumento di FInms5 nei muscoli latissimus dorsi and teres major durante cicli consecutivi di DP, l’elevata concentrazione di acido lattico (P = 0.001), l’aumento di percezione dello sforzo (P = 0.005) e la riduzione e della capacità di esprimere forza di spinta (P = 0.020) hanno delineato uno stato di fatica durante la prova POST. Ciononostante, non sono state trovate differenze tra le prove PRE e POST nello spostamento verticale del COM (P = 0.968), nell’inclinazione del corpo (P = 0.087), nella cinematica articolare e dei bastoncini (P = 0.415). La fatica ha portato ad una riduzione nella durata della fase di recupero (P < 0.001) e dell’intero ciclo di movimento (P = 0.001). E’ stata confermata una correlazione positive tra θmax e gli integrali di forza di spinta (P = 0.06), nonché tra θmac e la durata del ciclo (P = 0.02). Durante il DP, la cinematica del corpo non varia prima e dopo un esercizio affaticante ad alta intensità, in sciatori di fondo di alto livello. La ridotta capacità di esprimere forza di spinta dopo l’affaticamento porta ad eseguire cicli di DP più corti e frequenti, e deriva dallo stato di affaticamento muscolare localizzato piuttosto che da un’alterazione nel pattern cinematico del corpo. Studio 3 L’obiettivo del terzo studio é stato una valutazione dell’efficacia dello stretch-shortening cycling (SSCEFF) in alcuni muscoli estensori degli arti superiori, durante la tecnica di DP. A questo scopo, SSCEFF é stata analizzata in relazione alla velocità di DP ed al livello di performance degli atleti. Undici atleti d’elite di sci di fondo hanno eseguito un test incrementale massimale per determinare la massima velocità di DP (Vmax). Dopodiché, le caratteristiche del ciclo, la cinematica dell’angolo al gomito e le forze di spinta sono state monitorate durante l’esecuzione del DP su treadmill con ski roll, a due velocità sottomassimali e ad una velocità di gara (85% of Vmax). E’ stata calcolata l’attività elettromiografia media registrata nei muscoli triceps brachii e latissimus dorsi durante le fasi di flessione ed estensione del gomito dell’intera fase di spinta (EMGFLEX, EMGEXT), e durante la fase di pre-attivazione, identificata prima dell’inizio della fase di spinta (EMGPRE). Per ogni muscolo, é’ stato definito SSCEFF il rapporto tra EMGFLEX e aEMGEXT. EMGPRE and EMGFLEX sono aumentati incrementando la velocità di DP in entrambi I muscoli (P<0.01), così come SSCEFF (da 0.9±0.3 a 1.3±0.5 per il muscolo triceps brachii and da 0.9±0.4 a 1.5±0.5 per il muscolo latissimus dorsi) e la forza di spinta (da 253±33 a 290±36 N; P<0.05). Inoltre, SSCEFF ha mostrato una correlazione positiva con Vmax, EMGPRE e EMGFLEX (P<0.05). Gli adattamenti neuromuscolari che si verificano durante il DP a velocità più elevate, quando una maggiore forza di spinta deve essere applicata al suolo, esercitano una grande influenza sulla performance degli sciatori di alto livello. Conclusione generale Questo progetto ha dimostrato che le strategie biomeccaniche e neuromuscolari adottate dagli sciatori di fondo durante la tecnica di double poling hanno una grande importanza nel determinare la capacità di esprimere forza di spinta, il costo energetico della locomozione e la stessa performance Questi risultati portano ad utili considerazioni nell’ottimizzazione dei metodi per allenare la forza specifica, la tecnica e le procedure di valutazione, specialmente in sciatori di fondo di alto livello.
Introduction Double poling (DP) is increasingly used during classic cross-country skiing races, becoming the dominant or exclusive technique used over the entire track, in some typology of competitions. This technique is a very particular type of locomotion, since the propulsion is mainly generated through the poles, thanks to the synergic poling actions of upper-limbs and trunk, exerted during the poling phase. The principal aim of this project was to verify weather biomechanical strategies are adopted by cross-country skiers to enhance the poling force exertion, the economy of locomotion, or to face fatigue. To accomplish these purposes, an integrative analysis of the technique was performed, including metabolic, biomechanical end EMG evaluations. Study 1 The aim of the study 1 was to evaluate relationships between energetic cost and COM displacement in DP cross-country skiing. Eight high-level (HLG) and eight regional-level (RLG) cross-country skiers performed a 5-min sub-maximal DP trial while roller skiing on a treadmill at 14 km•h-1 and 2° inclination. Energetic cost (ECDP), COM vertical displacement range, body inclination (θ, i.e. the angle between the vertical line and the line passing through COM and a fixed pivot point identified at feet level) and mechanical work associated to COM motion were analyzed. Pole and joint kinematics, poling forces and cycle timing were also considered. A forward multiple regression analysis was used to identify the COM-related parameters better predicting ECDP. HLG showed lower ECDP than RLG (3.37 ± 0.16 vs. 4.83 ± 0.57 J•m-1•kg-1), smaller COM vertical displacement range and mechanical work, higher θ during the early part of the poling phase. In HLG, pole inclination was higher, poling forces greater and cycle duration longer. Considering all skiers, the maximum value of θ (θmax) and the minimum value of COM vertical displacement resulted significant predictors of ECDP (AdjR2 = 0.734; P < 0.001). Furthermore, θmax was positively related to the integrals of poling force and to the cycle duration. During DP, a mechanically advantageous motion of COM in vertical and antero-posterior dimensions plays an important role in determining COM vertical displacement range, pole inclination, generation of poling force and cycle duration, finally influencing the energetic cost of locomotion. Study 2 The aim of the study 2 was to evaluate the biomechanical changes occurring in the DP technique after a high-intensity DP skiing exercise. Eight high-level cross-country skiers performed a 5-min sub-maximal DP trial (20 km•h-1 and 1° inclination) before (PRE) and after (POST) a maximal DP test to exhaustion, while roller skiing on the treadmill. Metabolic parameters, COM vertical displacement, body inclination (θ), pole and joint kinematics, poling forces and cycle timing were considered. Furthermore, muscle fatigue was measured in triceps brachii, latissimus dorsi and teres major muscles, by considering the Dimitrov’ fatigue index (FInms5) of specific EMG-signal segments recorded during the poling phase. An increasing trend of FInms5 across consecutive DP cycles in latissimus dorsi and teres major muscles, higher blood lactate concentration (P = 0.001), elevated rate of perceived exertion (P = 0.005), together with a reduction of poling force exertion (P = 0.020) delineated a state of fatigue during POST. However, no statistical differences were found in COM vertical displacement (P = 0.968), body inclination (P = 0.087), joint and pole kinematics (P = 0.415) between PRE and POST. Cycle characteristics were affected by fatigue, showing a reduction in recovery phase duration (P < 0.001) and cycle duration (P = 0.001). A positive relationships between θmax and integrals of poling force (P = 0.06), as well as between θmac and cycle duration (P = 0.02) were confirmed. While DP skiing, body kinematics is maintained unaltered in high-level skiers, before and after a high-intensity fatiguing exercises. The reduced poling force exertion capacity after fatigue lead to more short and frequent DP cycles. However, it seems due to the state of localized muscle fatigue rather that to an alteration in the body kinematic pattern. Study 3 The aim of the study 3 was to evaluate the effectiveness of stretch-shortening cycling (SSCEFF) in upper-limb extensor muscles while cross-country skiing using the DP technique. To this end, SSCEFF was analyzed in relation to DP velocity and performance. Eleven elite cross-country skiers performed an incremental test to determine maximal DP velocity (Vmax). Thereafter, cycle characteristics, elbow joint kinematics and poling forces were monitored on a treadmill while skiing at two sub-maximal and racing velocity (85% of Vmax). The average EMG activities of the triceps brachii and latissimus dorsi muscles were determined during the flexion and extension sub-phases of the poling cycle (EMGFLEX, EMGEXT), as well as prior to pole plant (EMGPRE). SSCEFF was defined as the ratio of aEMGFLEX to aEMGEXT. EMGPRE and EMGFLEX increased with velocity for both muscles (P<0.01), as did SSCEFF (from 0.9±0.3 to 1.3±0.5 for the triceps brachii and from 0.9±0.4 to 1.5±0.5 for the latissimus dorsi) and poling force (from 253±33 to 290±36 N; P<0.05). Furthermore, SSCEFF was positively correlated to Vmax, to EMGPRE and EMGFLEX (P<0.05). The neuromuscular adaptations made at higher velocities, when more poling force must be applied to the ground, exert a major influence on the DP performance of elite cross-country skiers. General conclusion The present project demonstrated that the biomechanical and neuromuscular strategies adopted by cross-country skiers during the double poling skiing are of great importance in determining poling force exertion capacity, energetic cost of locomotion and double poling performance. These findings lead to useful considerations to optimize strength training methods, technical training sessions and testing procedures, especially for high-level cross-country skiers.
Biomechanical and energetic aspects of cross-country skiing double poling technique
Zoppirolli, Chiara
2014-01-01
Abstract
Introduction Double poling (DP) is increasingly used during classic cross-country skiing races, becoming the dominant or exclusive technique used over the entire track, in some typology of competitions. This technique is a very particular type of locomotion, since the propulsion is mainly generated through the poles, thanks to the synergic poling actions of upper-limbs and trunk, exerted during the poling phase. The principal aim of this project was to verify weather biomechanical strategies are adopted by cross-country skiers to enhance the poling force exertion, the economy of locomotion, or to face fatigue. To accomplish these purposes, an integrative analysis of the technique was performed, including metabolic, biomechanical end EMG evaluations. Study 1 The aim of the study 1 was to evaluate relationships between energetic cost and COM displacement in DP cross-country skiing. Eight high-level (HLG) and eight regional-level (RLG) cross-country skiers performed a 5-min sub-maximal DP trial while roller skiing on a treadmill at 14 km•h-1 and 2° inclination. Energetic cost (ECDP), COM vertical displacement range, body inclination (θ, i.e. the angle between the vertical line and the line passing through COM and a fixed pivot point identified at feet level) and mechanical work associated to COM motion were analyzed. Pole and joint kinematics, poling forces and cycle timing were also considered. A forward multiple regression analysis was used to identify the COM-related parameters better predicting ECDP. HLG showed lower ECDP than RLG (3.37 ± 0.16 vs. 4.83 ± 0.57 J•m-1•kg-1), smaller COM vertical displacement range and mechanical work, higher θ during the early part of the poling phase. In HLG, pole inclination was higher, poling forces greater and cycle duration longer. Considering all skiers, the maximum value of θ (θmax) and the minimum value of COM vertical displacement resulted significant predictors of ECDP (AdjR2 = 0.734; P < 0.001). Furthermore, θmax was positively related to the integrals of poling force and to the cycle duration. During DP, a mechanically advantageous motion of COM in vertical and antero-posterior dimensions plays an important role in determining COM vertical displacement range, pole inclination, generation of poling force and cycle duration, finally influencing the energetic cost of locomotion. Study 2 The aim of the study 2 was to evaluate the biomechanical changes occurring in the DP technique after a high-intensity DP skiing exercise. Eight high-level cross-country skiers performed a 5-min sub-maximal DP trial (20 km•h-1 and 1° inclination) before (PRE) and after (POST) a maximal DP test to exhaustion, while roller skiing on the treadmill. Metabolic parameters, COM vertical displacement, body inclination (θ), pole and joint kinematics, poling forces and cycle timing were considered. Furthermore, muscle fatigue was measured in triceps brachii, latissimus dorsi and teres major muscles, by considering the Dimitrov’ fatigue index (FInms5) of specific EMG-signal segments recorded during the poling phase. An increasing trend of FInms5 across consecutive DP cycles in latissimus dorsi and teres major muscles, higher blood lactate concentration (P = 0.001), elevated rate of perceived exertion (P = 0.005), together with a reduction of poling force exertion (P = 0.020) delineated a state of fatigue during POST. However, no statistical differences were found in COM vertical displacement (P = 0.968), body inclination (P = 0.087), joint and pole kinematics (P = 0.415) between PRE and POST. Cycle characteristics were affected by fatigue, showing a reduction in recovery phase duration (P < 0.001) and cycle duration (P = 0.001). A positive relationships between θmax and integrals of poling force (P = 0.06), as well as between θmac and cycle duration (P = 0.02) were confirmed. While DP skiing, body kinematics is maintained unaltered in high-level skiers, before and after a high-intensity fatiguing exercises. The reduced poling force exertion capacity after fatigue lead to more short and frequent DP cycles. However, it seems due to the state of localized muscle fatigue rather that to an alteration in the body kinematic pattern. Study 3 The aim of the study 3 was to evaluate the effectiveness of stretch-shortening cycling (SSCEFF) in upper-limb extensor muscles while cross-country skiing using the DP technique. To this end, SSCEFF was analyzed in relation to DP velocity and performance. Eleven elite cross-country skiers performed an incremental test to determine maximal DP velocity (Vmax). Thereafter, cycle characteristics, elbow joint kinematics and poling forces were monitored on a treadmill while skiing at two sub-maximal and racing velocity (85% of Vmax). The average EMG activities of the triceps brachii and latissimus dorsi muscles were determined during the flexion and extension sub-phases of the poling cycle (EMGFLEX, EMGEXT), as well as prior to pole plant (EMGPRE). SSCEFF was defined as the ratio of aEMGFLEX to aEMGEXT. EMGPRE and EMGFLEX increased with velocity for both muscles (P<0.01), as did SSCEFF (from 0.9±0.3 to 1.3±0.5 for the triceps brachii and from 0.9±0.4 to 1.5±0.5 for the latissimus dorsi) and poling force (from 253±33 to 290±36 N; P<0.05). Furthermore, SSCEFF was positively correlated to Vmax, to EMGPRE and EMGFLEX (P<0.05). The neuromuscular adaptations made at higher velocities, when more poling force must be applied to the ground, exert a major influence on the DP performance of elite cross-country skiers. General conclusion The present project demonstrated that the biomechanical and neuromuscular strategies adopted by cross-country skiers during the double poling skiing are of great importance in determining poling force exertion capacity, energetic cost of locomotion and double poling performance. These findings lead to useful considerations to optimize strength training methods, technical training sessions and testing procedures, especially for high-level cross-country skiers.File | Dimensione | Formato | |
---|---|---|---|
Zoppirolli-PhD-thesis.pdf
non disponibili
Tipologia:
Tesi di dottorato
Licenza:
Accesso ristretto
Dimensione
3.26 MB
Formato
Adobe PDF
|
3.26 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.