Le condizioni ambientali cui sono esposte le piante variano in continuazione, in particolare per quanto riguarda quantità e qualità della luce incidente. Essendo organismi sessili, le piante hanno evoluto una serie di meccanismi atti a rispondere a queste continue variazioni, allo scopo di assorbire efficientemente la luce quando questa è limitante e di evitare la fotoinibizione in condizioni di alta luce. Diversi lavori sperimentali hanno studiato e descritto le modificazioni funzionali che avvengono nelle piante quando esse si adattano a crescere in condizioni di luce limitante o eccessiva. In particolare, cambiamenti nell’intensità dell’irraggiamento attivano molte risposte molecolari a livello del cloroplasto, che si possono distinguere in risposte a breve o a lungo termine sulla base del tempo necessario alla loro piena attivazione. Le risposte a lungo termine, che coinvolgono il cloroplasto in risposta a variazioni nella disponibilità di luce, sono collettivamente conosciute come acclimatazione, e consistono nella sintesi e degradazione selettiva di componenti funzionali dell’organello, al fine di ottimizzarne l’efficienza fotosintetica. La regolazione del turnover proteico è un meccanismo fondamentale che permette un controllo preciso del tipo e della quantità delle specie proteiche presenti nella cellula, determinando quindi i processi metabolici attivi. Nonostante la risposta di acclimatazione sia stata ampiamente studiata e descritta, i meccanismi molecolari che sono alla base della stessa non sono ancora ben definiti. Lo scopo di questa tesi è quello approfondire la conoscenza di questo processo, studiando da un lato i meccanismi molecolari coinvolti, e dall’altro la cinetica degli eventi di acclimatazione nella specie modello Arabidopsis thaliana. Sono stati testati diversi approcci analitici, allo scopo di misurare il tasso di turnover dei complessi fotosintetici, in piante esposte sia a bassa che ad alta luce. Tra tutti i complessi fotosintetici, solo per la subunità D1 del PSII è stato misurato il tempo di vita con precisione, mentre mancano indicazioni in letteratura sul tempo di vita degli altri complessi pigmento-proteina quali PSI, LHCI e LHCII. Lo studio del turnover del supercomplesso LHCII è di particolare interesse, in quanto LHCII è soggetto a una forte regolazione in seguito a variazioni nell’intensità della luce incidente, allo scopo di modulare la taglia funzionale di antenna. In un primo approccio siamo ricorsi ad esperimenti di pulse-chase utilizzando isotopi sia radioattivi che non-radioattivi. Le prove in cui è stato utilizzato 35S, sia come Na2SO4 che come metionina, hanno evidenziato come la foglia ricicli attivamente lo zolfo, oltre ad immagazzinarlo, probabilmente nel vacuolo, e questo fenomeno falsa la misura del turnover, sovrastimandolo. Per superare questo inconveniente abbiamo utilizzato l’acqua deuterata, che entra rapidamente nei compartimenti cellulari equilibrandosi con l’ambiente acquoso, permettendo quindi una più affidabile misura dei tempi di vita. In questo caso, l’efficienza di marcatura si è rivelata essere molto bassa per le proteine di membrana, e non ha permesso quindi di ottenere una buona stima del tasso di turnover, anche utilizzando una tecnica analitica molto sensibile quale la spettrometria di massa. Nel complesso, questi risultati confermano che la misura del tasso di turnover di LHCII è un obiettivo tutt’altro che banale, reso tale probabilmente dal lungo tempo di vita del complesso quando stabilizzato nella membrana tilacoidale. Siamo ricorsi quindi ad una differente strategia, volta a determinare la composizione dei complessi LHC in diverse condizioni di luce. A questo scopo le singole subunità LHC, clonate e purificate, verranno utilizzate come standard interno in un esperimento di spettrometria di massa, per confrontare la composizione dei tilacoidi di piante acclimatate a bassa o alta luce e determinare quale delle subunità LHC è regolata in risposta all’acclimatazione. Il clonaggio e le prove di espressione sono state svolte in questa tesi. Tra i meccanismi molecolari responsabili dell’adattamento all’intensità di luce, è stato approfondito il ruolo della degradazione delle clorofille nella riorganizzazione dell’apparato fotosintetico in seguito ad esposizione ad alta luce. Utilizzando mutanti che mancano di enzimi per la degradazione della clorofilla (nolnyc e pph) abbiamo evidenziato come lo stesso pathway di degradazione agisca non solo durante la senescenza fogliare, come precedentemente descritto, ma anche durante l’acclimatazione. Infatti, entrambi i mutanti mostravano un blocco nella regolazione della composizione dei fotosistemi, e questo indica che la rimozione delle clorofille è un evento fondamentale per la riorganizzazione dell’apparato fotosintetico. Nonostante ciò, il catabolismo delle clorofille non appare indispensabile alla fotoprotezione dei cloroplasti, visto che entrambi i mutanti mantengono una buona resa quantica del PSII durante il trattamento con alta luce. Oltre al ruolo delle clorofille, è stata approfondita la funzione delle xantofille nella modulazione della stabilità dei complessi fotosintetici. Oltre a confermare la loro importanza nella stabilizzazione dei complessi LHCII, è stato dimostrato come il contenuto di xantofille abbia un ruolo nella modulazione del contenuto relativo di PSI, rispetto al PSII: abbiamo stabilito una correlazione positiva tra il rapporto xantofille/carotenoidi e il rapporto PSI/PSII, all’interno di un ampio range di valori. Il risultato è stato ottenuto analizzando piante wild type con diverso rapporto xantofille/carotenoidi, regolato dall’intensità della luce di crescita. Inoltre, è stato studiato un mutante privo di xantofille (nox), incapace di crescere in terra a causa della completa mancanza di PSI. Questi risultati dimostrano che le xantofille hanno un ruolo fondamentale nella biogenesi del PSI e sono quindi necessarie alla crescita autotrofica. L’ultima parte del lavoro di tesi aveva l’obiettivo di individuare nuove subunità proteiche coinvolte nell’ottimizzazione della risposta di acclimatazione all’alta luce. Diversi prodotti genici sono stati selezionati in base all’annotazione, che riportava la presenza di domini simili a subunità del complesso ubiquitina/proteasoma, e una localizzazione cloroplastica. Tra i geni analizzati, tre sono stati selezionati in base al fenotipo di maggior suscettibilità alla fotoinibizione: AT2G22890, AT4G27030 and AT4G32250. I primi due geni codificano per isoforme di una desaturasi degli acidi grassi (FAD4), e questo suggerisce un ruolo chiave della biosintesi dei lipidi nella risposta allo stress foto-ossidativo. Il terzo gene identificato codifica per una protein chinasi, localizzata nell’envelope del cloroplasto, la cui assenza provoca una marcata fotoinibizione del PSII quando la pianta è esposta ad alta luce. Nel genoma di Arabidopsis non esistono geni omologhi a questo, ma si trovano ortologhi in altre specie di piante, indicando che questa funzione è stata probabilmente conservata durante l’evoluzione. Possiamo ipotizzare che questa subunità sia coinvolta nella trasduzione del segnale di stress dal cloroplasto al nucleo, o regoli l’import di proteine nel cloroplasto, oppure partecipi alla fosforilazione di proteine stromatiche target.

Plants continually experience fluctuations in the conditions of their environment, particularly in the quantity and quality of incident light. Since devoid of motility, plants have evolved a plethora of molecular mechanisms aimed to accommodate changes in irradiance, in order to enable efficient light harvesting in limited light while avoiding photoinhibition under excess light. A number of works have investigated the modifications occurring in various plant species when grown under limiting or excess irradiances. In particular, changes in light intensity elicit major responses at the level of chloroplast, which can be distinguished in short- and long-term response based on their timescale of activation. In particular the long-term responses to irradiance at the chloroplast level are known as acclimation, and consist in the selective synthesis and degradation of functional components in order to optimize the photosynthetic efficiency. Regulation of proteins turnover is surely involved in acclimation: it allows a fine tuning of the proteins quality and quantity, thus defining the metabolic processes active in the cell. However, the regulatory mechanisms which underlie the molecular rearrangement of chloroplast, in particular those elicited during acclimation to excess light, are still poorly defined. This thesis is aimed at gaining new insight on timing and factors affecting turnover of pigment-binding complexes, and how these modulate the acclimatory response in Arabidopsis thaliana leaves. Several efforts have been made in order to measure the turnover rate of photosynthetic complexes, both in low and high light conditions. Indeed, with the exception of D1 subunits, whose turnover rate has been assessed accurately, no information are available regarding the half-life of the other chlorophyll-binding complexes, such as PSI, LHCI and LHCII. The turnover of LHCII complexes is of particular interest, since degradation of this antenna is triggered by the high light response and represents a strategy to regulate the PSII functional antenna size. As first trials, both radioactive and non-radioactive pulse-chase experiments were performed. Pulse-chase with 35S, supplied either as Na2SO4 or methionine, showed that the plant cell actively recycles sulphur, as well as stores it probably in the vacuole, thus it leads to an over-estimation of protein turnover rate. A second approach resorted to deuterium oxide as a labelling system, coupled to a mass spectrometry analysis. 2H2O is totally invasive, rapidly equilibrates with the water environment, and therefore does not distort turnover rate estimation due to over-labelling of the system. In this case, a too low labelling efficiency was reached, thus making the assessment of turnover rate unreliable even with a very sensitive techniques such as mass spectrometry. Altogether, these results confirmed that determination of LHCII turnover rate was an hard task, indeed efficient labelling cannot be achieved by means of a classic pulse-chase approach, due to the long half-life of these complexes. A different strategy was thus pursued, namely purification of recombinant LHC isoforms to be used as internal standards in an mass-spectrometry analysis, in order to evaluate LHC abundance in thylakoids from low- vs. high-light acclimated plants and to assess which subunits are regulated during acclamatory responses. Both cloning and expression trials were carried out in this thesis work. Regarding the molecular mechanisms underlying acclimation, the role of chlorophylls degradation pathway on the high light dependent re-organization of the photosynthetic machinery was studied. By analyzing mutants devoid of chlorophylls catabolism enzymes (nolnyc and pph), we assessed that these enzymes are responsible for chlorophylls degradation not only during senescence, as previously shown, but even upon exposure to high light conditions. Both mutants were less effective than the wild type in regulating photosystems composition and abundance once challenged with HL, thus indicating that chlorophylls removal is one of the early events triggering acclimation of the photosynthetic apparatus. Nevertheless, chlorophylls catabolism was shown not essential for acclimation, since both mutants were effective in preserving PSII quantum yield in high light. In addition to chlorophylls, the function of xanthophylls in the structural stability of photosynthetic supercomplexes was assessed. Besides the well-known role in the stabilization of LHCII complexes, xanthophylls abundance was shown to modulate the PSI relative content: indeed, a positive correlation was assessed between xanthophylls/carotenoids and PSI/PSII ratios, within a wide range of values. These results were obtained by analyzing wild type plants whose xanthophylls/carotenoids content was modulated by the light intensity to which they were acclimated. Moreover, we isolated and studied the nox mutant, completely devoid of xanthophylls and unable to grow on soil since specifically depleted in PSI. Such a characterization lead to the conclusion that xanthophylls have a fundamental role in the biogenesis of PSI, thus making biosynthesis of these molecules crucial for sustaining autotrophic growth. The last part of the thesis aimed at finding new candidate proteins involved in the acclimation response to HL. A number of genes were selected on the strength of their annotation, in which an ubiquitin/proteasome-like domain was identified and the localization was indicated as chloroplastic. Among the tested loci, we selected 3 genes whose corresponding knock-out mutants yielded into impaired PSII photoprotection in high light: AT2G22890, AT4G27030 and AT4G32250. The first two encode for isoforms of fatty acid desaturase 4 (FAD4), thus suggesting a role for lipids biosynthesis in the response to photoxidative stress. The third gene identified encodes for a protein kinase, bound to the chloroplast envelope, whose lack yield into a severe photosensitivity. No homologous proteins are present in the Arabidopsis thaliana genome, while ortholog were found in different plant species, thus indicating that its function has been conserved through evolution. We hypothesized it could be related to some signal transduction pathways, linking chloroplast to nucleus, or might regulate protein import thought the chloroplast envelope, or phosphorylation of stromatic target proteins.

Regulation of chloroplast pigment-binding proteins turnover in Arabidopsis thaliana

RONZANI, Michela
2014-01-01

Abstract

Plants continually experience fluctuations in the conditions of their environment, particularly in the quantity and quality of incident light. Since devoid of motility, plants have evolved a plethora of molecular mechanisms aimed to accommodate changes in irradiance, in order to enable efficient light harvesting in limited light while avoiding photoinhibition under excess light. A number of works have investigated the modifications occurring in various plant species when grown under limiting or excess irradiances. In particular, changes in light intensity elicit major responses at the level of chloroplast, which can be distinguished in short- and long-term response based on their timescale of activation. In particular the long-term responses to irradiance at the chloroplast level are known as acclimation, and consist in the selective synthesis and degradation of functional components in order to optimize the photosynthetic efficiency. Regulation of proteins turnover is surely involved in acclimation: it allows a fine tuning of the proteins quality and quantity, thus defining the metabolic processes active in the cell. However, the regulatory mechanisms which underlie the molecular rearrangement of chloroplast, in particular those elicited during acclimation to excess light, are still poorly defined. This thesis is aimed at gaining new insight on timing and factors affecting turnover of pigment-binding complexes, and how these modulate the acclimatory response in Arabidopsis thaliana leaves. Several efforts have been made in order to measure the turnover rate of photosynthetic complexes, both in low and high light conditions. Indeed, with the exception of D1 subunits, whose turnover rate has been assessed accurately, no information are available regarding the half-life of the other chlorophyll-binding complexes, such as PSI, LHCI and LHCII. The turnover of LHCII complexes is of particular interest, since degradation of this antenna is triggered by the high light response and represents a strategy to regulate the PSII functional antenna size. As first trials, both radioactive and non-radioactive pulse-chase experiments were performed. Pulse-chase with 35S, supplied either as Na2SO4 or methionine, showed that the plant cell actively recycles sulphur, as well as stores it probably in the vacuole, thus it leads to an over-estimation of protein turnover rate. A second approach resorted to deuterium oxide as a labelling system, coupled to a mass spectrometry analysis. 2H2O is totally invasive, rapidly equilibrates with the water environment, and therefore does not distort turnover rate estimation due to over-labelling of the system. In this case, a too low labelling efficiency was reached, thus making the assessment of turnover rate unreliable even with a very sensitive techniques such as mass spectrometry. Altogether, these results confirmed that determination of LHCII turnover rate was an hard task, indeed efficient labelling cannot be achieved by means of a classic pulse-chase approach, due to the long half-life of these complexes. A different strategy was thus pursued, namely purification of recombinant LHC isoforms to be used as internal standards in an mass-spectrometry analysis, in order to evaluate LHC abundance in thylakoids from low- vs. high-light acclimated plants and to assess which subunits are regulated during acclamatory responses. Both cloning and expression trials were carried out in this thesis work. Regarding the molecular mechanisms underlying acclimation, the role of chlorophylls degradation pathway on the high light dependent re-organization of the photosynthetic machinery was studied. By analyzing mutants devoid of chlorophylls catabolism enzymes (nolnyc and pph), we assessed that these enzymes are responsible for chlorophylls degradation not only during senescence, as previously shown, but even upon exposure to high light conditions. Both mutants were less effective than the wild type in regulating photosystems composition and abundance once challenged with HL, thus indicating that chlorophylls removal is one of the early events triggering acclimation of the photosynthetic apparatus. Nevertheless, chlorophylls catabolism was shown not essential for acclimation, since both mutants were effective in preserving PSII quantum yield in high light. In addition to chlorophylls, the function of xanthophylls in the structural stability of photosynthetic supercomplexes was assessed. Besides the well-known role in the stabilization of LHCII complexes, xanthophylls abundance was shown to modulate the PSI relative content: indeed, a positive correlation was assessed between xanthophylls/carotenoids and PSI/PSII ratios, within a wide range of values. These results were obtained by analyzing wild type plants whose xanthophylls/carotenoids content was modulated by the light intensity to which they were acclimated. Moreover, we isolated and studied the nox mutant, completely devoid of xanthophylls and unable to grow on soil since specifically depleted in PSI. Such a characterization lead to the conclusion that xanthophylls have a fundamental role in the biogenesis of PSI, thus making biosynthesis of these molecules crucial for sustaining autotrophic growth. The last part of the thesis aimed at finding new candidate proteins involved in the acclimation response to HL. A number of genes were selected on the strength of their annotation, in which an ubiquitin/proteasome-like domain was identified and the localization was indicated as chloroplastic. Among the tested loci, we selected 3 genes whose corresponding knock-out mutants yielded into impaired PSII photoprotection in high light: AT2G22890, AT4G27030 and AT4G32250. The first two encode for isoforms of fatty acid desaturase 4 (FAD4), thus suggesting a role for lipids biosynthesis in the response to photoxidative stress. The third gene identified encodes for a protein kinase, bound to the chloroplast envelope, whose lack yield into a severe photosensitivity. No homologous proteins are present in the Arabidopsis thaliana genome, while ortholog were found in different plant species, thus indicating that its function has been conserved through evolution. We hypothesized it could be related to some signal transduction pathways, linking chloroplast to nucleus, or might regulate protein import thought the chloroplast envelope, or phosphorylation of stromatic target proteins.
2014
photosynthesis; protein turnover; acclimation; Arabidopsis thaliana; thylakoid pigment
Le condizioni ambientali cui sono esposte le piante variano in continuazione, in particolare per quanto riguarda quantità e qualità della luce incidente. Essendo organismi sessili, le piante hanno evoluto una serie di meccanismi atti a rispondere a queste continue variazioni, allo scopo di assorbire efficientemente la luce quando questa è limitante e di evitare la fotoinibizione in condizioni di alta luce. Diversi lavori sperimentali hanno studiato e descritto le modificazioni funzionali che avvengono nelle piante quando esse si adattano a crescere in condizioni di luce limitante o eccessiva. In particolare, cambiamenti nell’intensità dell’irraggiamento attivano molte risposte molecolari a livello del cloroplasto, che si possono distinguere in risposte a breve o a lungo termine sulla base del tempo necessario alla loro piena attivazione. Le risposte a lungo termine, che coinvolgono il cloroplasto in risposta a variazioni nella disponibilità di luce, sono collettivamente conosciute come acclimatazione, e consistono nella sintesi e degradazione selettiva di componenti funzionali dell’organello, al fine di ottimizzarne l’efficienza fotosintetica. La regolazione del turnover proteico è un meccanismo fondamentale che permette un controllo preciso del tipo e della quantità delle specie proteiche presenti nella cellula, determinando quindi i processi metabolici attivi. Nonostante la risposta di acclimatazione sia stata ampiamente studiata e descritta, i meccanismi molecolari che sono alla base della stessa non sono ancora ben definiti. Lo scopo di questa tesi è quello approfondire la conoscenza di questo processo, studiando da un lato i meccanismi molecolari coinvolti, e dall’altro la cinetica degli eventi di acclimatazione nella specie modello Arabidopsis thaliana. Sono stati testati diversi approcci analitici, allo scopo di misurare il tasso di turnover dei complessi fotosintetici, in piante esposte sia a bassa che ad alta luce. Tra tutti i complessi fotosintetici, solo per la subunità D1 del PSII è stato misurato il tempo di vita con precisione, mentre mancano indicazioni in letteratura sul tempo di vita degli altri complessi pigmento-proteina quali PSI, LHCI e LHCII. Lo studio del turnover del supercomplesso LHCII è di particolare interesse, in quanto LHCII è soggetto a una forte regolazione in seguito a variazioni nell’intensità della luce incidente, allo scopo di modulare la taglia funzionale di antenna. In un primo approccio siamo ricorsi ad esperimenti di pulse-chase utilizzando isotopi sia radioattivi che non-radioattivi. Le prove in cui è stato utilizzato 35S, sia come Na2SO4 che come metionina, hanno evidenziato come la foglia ricicli attivamente lo zolfo, oltre ad immagazzinarlo, probabilmente nel vacuolo, e questo fenomeno falsa la misura del turnover, sovrastimandolo. Per superare questo inconveniente abbiamo utilizzato l’acqua deuterata, che entra rapidamente nei compartimenti cellulari equilibrandosi con l’ambiente acquoso, permettendo quindi una più affidabile misura dei tempi di vita. In questo caso, l’efficienza di marcatura si è rivelata essere molto bassa per le proteine di membrana, e non ha permesso quindi di ottenere una buona stima del tasso di turnover, anche utilizzando una tecnica analitica molto sensibile quale la spettrometria di massa. Nel complesso, questi risultati confermano che la misura del tasso di turnover di LHCII è un obiettivo tutt’altro che banale, reso tale probabilmente dal lungo tempo di vita del complesso quando stabilizzato nella membrana tilacoidale. Siamo ricorsi quindi ad una differente strategia, volta a determinare la composizione dei complessi LHC in diverse condizioni di luce. A questo scopo le singole subunità LHC, clonate e purificate, verranno utilizzate come standard interno in un esperimento di spettrometria di massa, per confrontare la composizione dei tilacoidi di piante acclimatate a bassa o alta luce e determinare quale delle subunità LHC è regolata in risposta all’acclimatazione. Il clonaggio e le prove di espressione sono state svolte in questa tesi. Tra i meccanismi molecolari responsabili dell’adattamento all’intensità di luce, è stato approfondito il ruolo della degradazione delle clorofille nella riorganizzazione dell’apparato fotosintetico in seguito ad esposizione ad alta luce. Utilizzando mutanti che mancano di enzimi per la degradazione della clorofilla (nolnyc e pph) abbiamo evidenziato come lo stesso pathway di degradazione agisca non solo durante la senescenza fogliare, come precedentemente descritto, ma anche durante l’acclimatazione. Infatti, entrambi i mutanti mostravano un blocco nella regolazione della composizione dei fotosistemi, e questo indica che la rimozione delle clorofille è un evento fondamentale per la riorganizzazione dell’apparato fotosintetico. Nonostante ciò, il catabolismo delle clorofille non appare indispensabile alla fotoprotezione dei cloroplasti, visto che entrambi i mutanti mantengono una buona resa quantica del PSII durante il trattamento con alta luce. Oltre al ruolo delle clorofille, è stata approfondita la funzione delle xantofille nella modulazione della stabilità dei complessi fotosintetici. Oltre a confermare la loro importanza nella stabilizzazione dei complessi LHCII, è stato dimostrato come il contenuto di xantofille abbia un ruolo nella modulazione del contenuto relativo di PSI, rispetto al PSII: abbiamo stabilito una correlazione positiva tra il rapporto xantofille/carotenoidi e il rapporto PSI/PSII, all’interno di un ampio range di valori. Il risultato è stato ottenuto analizzando piante wild type con diverso rapporto xantofille/carotenoidi, regolato dall’intensità della luce di crescita. Inoltre, è stato studiato un mutante privo di xantofille (nox), incapace di crescere in terra a causa della completa mancanza di PSI. Questi risultati dimostrano che le xantofille hanno un ruolo fondamentale nella biogenesi del PSI e sono quindi necessarie alla crescita autotrofica. L’ultima parte del lavoro di tesi aveva l’obiettivo di individuare nuove subunità proteiche coinvolte nell’ottimizzazione della risposta di acclimatazione all’alta luce. Diversi prodotti genici sono stati selezionati in base all’annotazione, che riportava la presenza di domini simili a subunità del complesso ubiquitina/proteasoma, e una localizzazione cloroplastica. Tra i geni analizzati, tre sono stati selezionati in base al fenotipo di maggior suscettibilità alla fotoinibizione: AT2G22890, AT4G27030 and AT4G32250. I primi due geni codificano per isoforme di una desaturasi degli acidi grassi (FAD4), e questo suggerisce un ruolo chiave della biosintesi dei lipidi nella risposta allo stress foto-ossidativo. Il terzo gene identificato codifica per una protein chinasi, localizzata nell’envelope del cloroplasto, la cui assenza provoca una marcata fotoinibizione del PSII quando la pianta è esposta ad alta luce. Nel genoma di Arabidopsis non esistono geni omologhi a questo, ma si trovano ortologhi in altre specie di piante, indicando che questa funzione è stata probabilmente conservata durante l’evoluzione. Possiamo ipotizzare che questa subunità sia coinvolta nella trasduzione del segnale di stress dal cloroplasto al nucleo, o regoli l’import di proteine nel cloroplasto, oppure partecipi alla fosforilazione di proteine stromatiche target.
File in questo prodotto:
File Dimensione Formato  
Tesi Dottorato Ronzani Michela.pdf

non disponibili

Tipologia: Tesi di dottorato
Licenza: Accesso ristretto
Dimensione 4.37 MB
Formato Adobe PDF
4.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/697165
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact