In the last five years photovoltaic modules production continued to be one of the rapidly growing industrial sectors, with an increase well in excess of 40% per year. This growth is driven not only by the progress in materials and technology, but also by incentives to sup‐ port the market in an increasing number of countries all over the world. Besides, the in‐ crease in the price of fossil fuels in 2008, highlighted the necessity to diversify provisioning for the sake of energy security and to emphasize the benefits of local renewable energy sour‐ ces such as solar energy. The high growth was achieved by an increase in production capaci‐ ty based on the technology of crystalline silicon, but in recent years, despite the already very high industrial growth rates, thin film photovoltaics has grown at an increasingly fast pace and its market share has increased from 6% in 2006 to over 12% in 2010. However, the ma‐ jority of photovoltaic modules installed today are produced by the well-established technol‐ ogy of monocrystalline and polycrystalline silicon, which is very close to the technology used for the creation of electronic chips. The high temperatures involved, the necessity to work in ultra-high vacuum and the complex cutting and assembly of silicon "wafers", make the technology inherently complicated and expensive. In spite of everything, silicon is still dominating the photovoltaic market with 90% of sales. Other photovoltaic devices based on silicon are produced in the form of "thin films" or in silicon ribbons; these devices are still in the experimental stage.

Polycrystalline Cu(InGa)Se2/CdS Thin Film Solar Cells Made by New Precursors

ROMEO, Alessandro;
2013

Abstract

In the last five years photovoltaic modules production continued to be one of the rapidly growing industrial sectors, with an increase well in excess of 40% per year. This growth is driven not only by the progress in materials and technology, but also by incentives to sup‐ port the market in an increasing number of countries all over the world. Besides, the in‐ crease in the price of fossil fuels in 2008, highlighted the necessity to diversify provisioning for the sake of energy security and to emphasize the benefits of local renewable energy sour‐ ces such as solar energy. The high growth was achieved by an increase in production capaci‐ ty based on the technology of crystalline silicon, but in recent years, despite the already very high industrial growth rates, thin film photovoltaics has grown at an increasingly fast pace and its market share has increased from 6% in 2006 to over 12% in 2010. However, the ma‐ jority of photovoltaic modules installed today are produced by the well-established technol‐ ogy of monocrystalline and polycrystalline silicon, which is very close to the technology used for the creation of electronic chips. The high temperatures involved, the necessity to work in ultra-high vacuum and the complex cutting and assembly of silicon "wafers", make the technology inherently complicated and expensive. In spite of everything, silicon is still dominating the photovoltaic market with 90% of sales. Other photovoltaic devices based on silicon are produced in the form of "thin films" or in silicon ribbons; these devices are still in the experimental stage.
9789535110033
thin films; solar cells; chalcogenides
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11562/592155
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact