I metaboliti secondari sono considerati necessari per l’interazione della pianta con l’ambiente; tuttavia la precisa funzione di specifici metaboliti è nota solo in pochi casi. Un possibile approccio per studiarne i ruoli nella pianta è quello di modificare il profilo metabolico di colture cellulari in vitro e indagare sull’impatto di tali modifiche in relazione al fenotipo. L’approccio sperimentale proposto nel presente progetto di ricerca può essere riassunto in quattro passaggi principali: 1) analisi dettagliata del profilo metabolico, in termini di metaboliti secondari, delle linee cellulari; 2) il profilo metabolico delle cellule viene modificato attraverso la somministrazione di precursori e inibitori e l’effetto dei trattamenti sul metaboloma viene monitorato attraverso HPLC-DAD e HPLC-ESI-MS; 3) le linee cellulari vengono sottoposte a brevi stress a gli effetti vengono caratterizzati da un punto di vista citologico al fine di identificare specifici tratti fenotipici causati dall’applicazione di specifici stress; 4) vengono valutati gli effetti della modifica del metaboloma in relazione alla risposta cellulare nei confronti dello stress. Tre linee cellulari, appartenenti a differenti specie vegetali, sono state scelte per la loro abilità di accumulare un diverso insieme di metaboliti secondari: T2b (Ocimum basilicum), Sw4i (Petunia hybrida) e R3M (Daucus carota). La linea cellulare di basilico, T2b, è stata oggetto di una strategia che ha previsto l’uso dell’inibitore della biosintesi di coumaroyl CoA (3,4-(metilenediossi) acido cinnamico, MDCA) accoppiato con la somministrazione di un precursore degli antociani (diidroquercetina, DHQ), al fine di variare il rapporto tra acido rosmarinico (RA) e antocianine (AC). Per la linea cellulare di petunia, Sw4i, sono state messe a punto due diverse strategie per modularne il profilo metabolico. Attraverso la somministrazione di diidroquercetina, precursore di AC tipo cianidina e delfinidina, è stata ottenuta una modifica del rapporto tra antocianine metilate e non metilate. Nella seconda strategia, l’uso dell’acido piperonilico (PIP), inibitore della biosintesi dell’acido p-cumarico, ha permesso di modificare l’accumulo di AC acilate nei confronti AC non acilate, con una significativa riduzione dei livelli di AC acilate. Le cellule di carota R3M sono state trattate con PIP al fine di diminuire l’accumulo di AC acilate. Diversamente dai risultati ottenuti con petunia, dopo il trattamento, le AC non acilate hanno subito una forte riduzione. Questo risultato inaspettato potrebbe dipendere dalla non-specificità degli enzimi aciltransferasi in R3M. Infatti, PIP e acido cinnamico (substrato della reazione inibita dal PIP) potrebbero essere usati per generare AC acilate a scapito dell’accumulo di AC non acilate. Nella linea cellulare R3M, è stato possibile indagare il ruolo protettivo di specifiche classi di metaboliti secondari dopo l’applicazione dello stress, attraverso la somministrazione di precursori e inibitori. Il trattamento termico di 1 h a 44°C induceva la comparsa di placche citoplasmatiche circondate da reticolo endoplasmico; è stato inoltre dimostrato che le cellule di carota che mostravano questa morfologia erano destinate ad una morte cellulare di tipo lento. Esperimenti precedenti, mediante somministrazione di acidi idrossicinnamici (HCA) prima del trattamento termico, hanno causato un aumento delle AC acilate e dei derivati degli HCA e una riduzione del numero di cellule che presentava le placche. In seguito al trattamento con PIP, è stata ottenuta una diminuzione dei livelli di AC non acilate e di derivati degli HCA e un aumento del numero di cellule che mostrava un fenotipo stressato. Confrontando i due risultati ottenuti mediante i due approcci complementari, non è possibile valutare il ruolo degli AC. Nonostante ciò, entrambe le strategie hanno suggerito un ruolo degli HCA nella prevenzione dei danni cellulari indotti dallo stress al calore in cellule di carota R3M.

Secondary metabolites are considered necessary for plant adaptation to the variable environment; however, only for few secondary metabolites the specific functions are known in detail. One possible approach to elucidate their roles in plant is to modify the secondary metabolite profile of in vitro cell cultures and investigate the impact of such modifications on the phenotype. The general experimental approach followed in this investigation can be summarized by these four different steps: 1) detailed analysis of the secondary metabolite profile of the chosen cell lines; 2) the metabolite profile of the cells is modified by precursor and inhibitor administration, i.e. the main object of this research project, and the effects of any treatment on the metabolome are monitored though HPLC-DAD and HPLC-ESI-MS; 3) short stresses are applied to cells and the effects of stress are characterized from a cytological point of view in order to identify specific phenotypic traits caused by stress application; 4) the effects of the metabolome modification on cellular response against the stress are evaluated. Three in vitro cell lines derived from different plant species, T2b (Ocimum basilicum), Sw4i (Petunia hybrida), R3M (Daucus carota), have been chosen for their ability to accumulate different set of secondary metabolites. In the basil cell line, T2b, a strategy using the inhibitor of the biosynthesis of coumaroyl CoA (3,4- (methylenedioxy) cinnamic acid, MDCA) coupled with the supplementation of an AC precursor (dihydroquercetin, DHQ) was performed, in order to change the ratio between rosmarinic acid (RA) and anthocyanins (ACs). In the petunia cell line, Sw4i, two different strategies were designed in order to modulate the metabolic profile. A modification of the ratio between methylated ACs (petunidin, malvidin, peonidin) and non-methylated ACs (delphinidin, cyanidin) was obtained feeding cells with DHQ, a precursor of cyanidin and delphinidin based-ACs in petunia species. In the second strategy, the use of piperonylic acid (PIP), an inhibitor of the biosynthesis of p-coumaric acid, allowed to modify the accumulation of acylated ACs versus non-acylated ACs, with a significant decrease of acylated ACs. In the carrot cell line, R3M, cells were treated with PIP in order to decrease the accumulation of acylated ACs, as obtained in petunia. Surprisingly, after the treatment, non-acylated ACs underwent a strong reduction. This unexpected result might be due to the non-specificity of acyltransferase enzymes in carrot cell line. In fact, PIP supplied to cells and cinnamic acid accumulated as substrate of the inhibited reaction, might be used to generate acylated ACs at the expense of non-acylated ACs. In R3M cell line, the protective role of specific classes of secondary metabolites after stress application could be investigated both through precursor and inhibitor administration. The heat treatment at 44°C for 1 h induced the appearance of cytoplasmic patches surrounded by endoplasmic reticulum; it was also demonstrated that the carrot cells showing this morphology were committed to a slow cell death fate. Previous experiments of feeding with hydroxycinnamic acids (HCAs) before the heat treatment caused an increase in acylated ACs and HCAs derivatives and the reduction of the number of cells with patches. By supplying PIP to R3M cells we obtained the decrease of the level of non-acylated ACs and HCA derivatives and an increase of the number of cells with stressed phenotype. Comparing the results obtained by the two complementary approaches, it was not possible to assess the role of ACs. However both strategies suggested a role of HCAs in the prevention of cellular damages induced by heat stress in R3M carrot cells.

The modification of metabolic profile in plant cell cultures as a strategy to investigate the biological role of secondary metabolites

STRAZZER, Pamela
2013-01-01

Abstract

Secondary metabolites are considered necessary for plant adaptation to the variable environment; however, only for few secondary metabolites the specific functions are known in detail. One possible approach to elucidate their roles in plant is to modify the secondary metabolite profile of in vitro cell cultures and investigate the impact of such modifications on the phenotype. The general experimental approach followed in this investigation can be summarized by these four different steps: 1) detailed analysis of the secondary metabolite profile of the chosen cell lines; 2) the metabolite profile of the cells is modified by precursor and inhibitor administration, i.e. the main object of this research project, and the effects of any treatment on the metabolome are monitored though HPLC-DAD and HPLC-ESI-MS; 3) short stresses are applied to cells and the effects of stress are characterized from a cytological point of view in order to identify specific phenotypic traits caused by stress application; 4) the effects of the metabolome modification on cellular response against the stress are evaluated. Three in vitro cell lines derived from different plant species, T2b (Ocimum basilicum), Sw4i (Petunia hybrida), R3M (Daucus carota), have been chosen for their ability to accumulate different set of secondary metabolites. In the basil cell line, T2b, a strategy using the inhibitor of the biosynthesis of coumaroyl CoA (3,4- (methylenedioxy) cinnamic acid, MDCA) coupled with the supplementation of an AC precursor (dihydroquercetin, DHQ) was performed, in order to change the ratio between rosmarinic acid (RA) and anthocyanins (ACs). In the petunia cell line, Sw4i, two different strategies were designed in order to modulate the metabolic profile. A modification of the ratio between methylated ACs (petunidin, malvidin, peonidin) and non-methylated ACs (delphinidin, cyanidin) was obtained feeding cells with DHQ, a precursor of cyanidin and delphinidin based-ACs in petunia species. In the second strategy, the use of piperonylic acid (PIP), an inhibitor of the biosynthesis of p-coumaric acid, allowed to modify the accumulation of acylated ACs versus non-acylated ACs, with a significant decrease of acylated ACs. In the carrot cell line, R3M, cells were treated with PIP in order to decrease the accumulation of acylated ACs, as obtained in petunia. Surprisingly, after the treatment, non-acylated ACs underwent a strong reduction. This unexpected result might be due to the non-specificity of acyltransferase enzymes in carrot cell line. In fact, PIP supplied to cells and cinnamic acid accumulated as substrate of the inhibited reaction, might be used to generate acylated ACs at the expense of non-acylated ACs. In R3M cell line, the protective role of specific classes of secondary metabolites after stress application could be investigated both through precursor and inhibitor administration. The heat treatment at 44°C for 1 h induced the appearance of cytoplasmic patches surrounded by endoplasmic reticulum; it was also demonstrated that the carrot cells showing this morphology were committed to a slow cell death fate. Previous experiments of feeding with hydroxycinnamic acids (HCAs) before the heat treatment caused an increase in acylated ACs and HCAs derivatives and the reduction of the number of cells with patches. By supplying PIP to R3M cells we obtained the decrease of the level of non-acylated ACs and HCA derivatives and an increase of the number of cells with stressed phenotype. Comparing the results obtained by the two complementary approaches, it was not possible to assess the role of ACs. However both strategies suggested a role of HCAs in the prevention of cellular damages induced by heat stress in R3M carrot cells.
2013
plant secondary metabolites; in vitro cell cultures; anthocyanins; Ocimum basilicum; Petunia hybrida; Daucus carota; mass spectrometry
I metaboliti secondari sono considerati necessari per l’interazione della pianta con l’ambiente; tuttavia la precisa funzione di specifici metaboliti è nota solo in pochi casi. Un possibile approccio per studiarne i ruoli nella pianta è quello di modificare il profilo metabolico di colture cellulari in vitro e indagare sull’impatto di tali modifiche in relazione al fenotipo. L’approccio sperimentale proposto nel presente progetto di ricerca può essere riassunto in quattro passaggi principali: 1) analisi dettagliata del profilo metabolico, in termini di metaboliti secondari, delle linee cellulari; 2) il profilo metabolico delle cellule viene modificato attraverso la somministrazione di precursori e inibitori e l’effetto dei trattamenti sul metaboloma viene monitorato attraverso HPLC-DAD e HPLC-ESI-MS; 3) le linee cellulari vengono sottoposte a brevi stress a gli effetti vengono caratterizzati da un punto di vista citologico al fine di identificare specifici tratti fenotipici causati dall’applicazione di specifici stress; 4) vengono valutati gli effetti della modifica del metaboloma in relazione alla risposta cellulare nei confronti dello stress. Tre linee cellulari, appartenenti a differenti specie vegetali, sono state scelte per la loro abilità di accumulare un diverso insieme di metaboliti secondari: T2b (Ocimum basilicum), Sw4i (Petunia hybrida) e R3M (Daucus carota). La linea cellulare di basilico, T2b, è stata oggetto di una strategia che ha previsto l’uso dell’inibitore della biosintesi di coumaroyl CoA (3,4-(metilenediossi) acido cinnamico, MDCA) accoppiato con la somministrazione di un precursore degli antociani (diidroquercetina, DHQ), al fine di variare il rapporto tra acido rosmarinico (RA) e antocianine (AC). Per la linea cellulare di petunia, Sw4i, sono state messe a punto due diverse strategie per modularne il profilo metabolico. Attraverso la somministrazione di diidroquercetina, precursore di AC tipo cianidina e delfinidina, è stata ottenuta una modifica del rapporto tra antocianine metilate e non metilate. Nella seconda strategia, l’uso dell’acido piperonilico (PIP), inibitore della biosintesi dell’acido p-cumarico, ha permesso di modificare l’accumulo di AC acilate nei confronti AC non acilate, con una significativa riduzione dei livelli di AC acilate. Le cellule di carota R3M sono state trattate con PIP al fine di diminuire l’accumulo di AC acilate. Diversamente dai risultati ottenuti con petunia, dopo il trattamento, le AC non acilate hanno subito una forte riduzione. Questo risultato inaspettato potrebbe dipendere dalla non-specificità degli enzimi aciltransferasi in R3M. Infatti, PIP e acido cinnamico (substrato della reazione inibita dal PIP) potrebbero essere usati per generare AC acilate a scapito dell’accumulo di AC non acilate. Nella linea cellulare R3M, è stato possibile indagare il ruolo protettivo di specifiche classi di metaboliti secondari dopo l’applicazione dello stress, attraverso la somministrazione di precursori e inibitori. Il trattamento termico di 1 h a 44°C induceva la comparsa di placche citoplasmatiche circondate da reticolo endoplasmico; è stato inoltre dimostrato che le cellule di carota che mostravano questa morfologia erano destinate ad una morte cellulare di tipo lento. Esperimenti precedenti, mediante somministrazione di acidi idrossicinnamici (HCA) prima del trattamento termico, hanno causato un aumento delle AC acilate e dei derivati degli HCA e una riduzione del numero di cellule che presentava le placche. In seguito al trattamento con PIP, è stata ottenuta una diminuzione dei livelli di AC non acilate e di derivati degli HCA e un aumento del numero di cellule che mostrava un fenotipo stressato. Confrontando i due risultati ottenuti mediante i due approcci complementari, non è possibile valutare il ruolo degli AC. Nonostante ciò, entrambe le strategie hanno suggerito un ruolo degli HCA nella prevenzione dei danni cellulari indotti dallo stress al calore in cellule di carota R3M.
File in questo prodotto:
File Dimensione Formato  
Tesi di Dottorato.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Dominio pubblico
Dimensione 2.65 MB
Formato Adobe PDF
2.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/544949
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact