L’arsenico è un elemento ubiquitario che ricorre con naturale abbondanza nella crosta terrestre. È tossico sia per le piante che per gli animali e ne è stato dimostrato il potere cancerogeno nell’uomo (Ng, 2005). La tossicità dell’As nei confronti della salute umana si esplica in un ampio range di patologie che vanno da lesioni cutanee a cancro ai reni, allo stomaco, al fegato (Smith et al., 1992). La contaminazione da As nelle acque ad uso domestico è stata riportata in più di 70 paesi diversi, e si stima che abbia compromesso la salute di più di 150 milioni di persone nel mondo (Ravenscroft et al., 2009). Data la sua ampia distribuzione ed elevata tossicità, la contaminazione da arsenico rappresenta oggigiorno un problema di importanza mondiale (Ng et al., 2003). Un interessante caso di studio – in esame in questo lavoro di dottorato – è rappresentato dall’area di Scarlino, un Sito con priorità di risanamento di Interesse Regionale (SRI). In questo contesto la contaminazione di suoli e falde è stata provocata dall’accumulo di scorie di arsenopirite derivanti dall’incenerimento del minerale per la produzione di acido solforico presso l’impianto industriale Nuova Solmine operante nel sito. Aldilà del fattore di contaminazione antropico, tutta l’area di Scarlino è allo stesso tempo contaminata per cause naturali, i suoli di tutto il comune, al di fuori delle aree industriali, presentano infatti una concentrazione media di As pari a 140 mg/kg. Dal punto di vista biotecnologico un approccio che potrebbe attenuare questa problematica è rappresentato dalla fitoestrazione assistita da batteri. La fitobonifica in generale è l’insieme delle tecnologie a basso costo e impatto ambientale che prevede l’uso di piante vascolari per il risanamento in situ di suoli, fanghi e sedimenti contaminati. In particolare, in caso di suoli contaminati da As o metalli, la fitoestrazione – che prevede la concentrazione dei contaminanti nei tessuti vegetali e la loro successiva raccolta – rappresenta la strategia di maggior successo (Khan, 2005). I microrganismi hanno un ruolo fondamentale in tale processo. Di fatto i batteri possono incrementare la mobilità dell’arsenico dalla matrice suolo (stimolandone l’uptake da parte della pianta) mentre rizobatteri promotori delle crescita vegetale (PGPR) possono elicitare la produzione in biomassa vegetale (Abou-Shanab et al., 2003) migliorando in entrambi i casi l’efficienza del sistema. sulla base dei risultati ottenuti è possibile affermare che: L'elevata contaminazione presente nell’area industriale ha esercitato una notevole pressione selettiva sulla cenosi batterica autoctona verso una comunità più tollerante, caratterizzata da un’elevata biodiversità, resistenza e potenziale abilità nella trasformazione degli ossianioni As(III) e As(V); • All’interno dell’area, laddove la contaminazione è più severa si è evidenziata una prevalenza di batteri Gram positivi appartenenti a phylum Firmicutes e Actinobacteria e ceppi a cui si riconducono interessanti tratti coinvolti nel metabolismi dell’arsenico; • Gli isolati riconducibili alla specie Delftia lacustris, Pseudomonas putida, in grado di ridurre l’As(V) in vitro con elevata efficienza, potrebbero potenzialmente solubilizzare l’As nel suolo; • Tra i membri della comunità batterica isolati in coltura pura, per lo più tra i Gammaproteobatteri, hanno evidenziato diversi tratti PGP risultando di particolare interesse in una prospettiva di fitobonifica secondo un protocollo di bioaugmentation; Abstract – Riassunto 22 • Gli isolati Ochrobactrum cytisi OTU E, Pseudomonas putida OTU N and Achromobacter marplatensis OTU P sono stati selezionati e testati in una prova di fitoestrazione assistita da batteri in presenza delle felce iperaccumulatrice di As P. vittata. Essi hanno esercitato effetti positivi sia per quanto riguarda la produzione in biomassa che per quanto riguarda l’efficienza di estrazione del contaminante dal suolo. Invero tutte le felci, con o senza inoculo, sono state in grado di estrarre delle discrete quantità di As anche se, in presenza dei ceppi PGP, si sono dimostrate più efficaci. Si stanno momentaneamente attendendo i risultati di una seconda prova di fitoestrazione assistita da altri ceppi PGP selezionati (P. putida, Delftia lacustris, B. thuringiensis, Variovorax paradoxus, Pseudoxanthomonas mexicana). Queste stime preliminari consentiranno quindi di meglio valutare il potenziale del sistema di fitoestrazione in esami e di programmare quindi una prova in scala pilota nel sito industriale di Scarlino. Concludendo, si ritiene che un sistema integrato di felci iperaccumulatrici e batteri PGP resistenti all’arsenico possa essere un valido strumento per attuare la bonifica nell’area.
Arsenic is an ubiquitous element which occurs naturally in the earth's crust. Arsenic is toxic to both plants and animals and inorganic arsenicals are proven carcinogens in humans (Ng, 2005). Arsenic toxicity to human health ranges from skin lesions to brain, liver, kidney, and stomach cancer (Smith et al., 1992). Arsenic contamination of groundwater used for domestic supplies has been reported in over 70 countries, affecting health of an estimated 150 million people (Ravenscroft et al., 2009). Because of its wide distribution and marked toxic effects, arsenic contamination is a problem of global concern. Inorganic arsenic is indeed regarded as the number one toxin in the USEPA list of priority pollutants (Ng et al., 2003). In this respect, an interesting case study is that discussed in this PhD thesis focusing on the Scarlino area, a Site of Regional Interest (SRI) which requires prominent attention from the environmental point of view. The contamination in this context is the result of dumping of ash from arsenopyrite roasting for more than 30 years as a consequence of sulfuric acid production by the Nuova Solmine Company operating with industrial facilities in this site. Disposal of such ash in addition to the natural arsenic background has thus provoked either a serious soil contamination or a diffuse pollution of aquifers within the whole industrial district, where As can be detected in an average concentration of 140 mg/kg. An approach that might alleviate this problem is represented by the biotechnological option defined as microbe-enhanced phytoremediation. Phytoremediation is a low-cost and eco-friendly technology that uses vascular plants for in situ environmental restoration and reclamation of contaminated soils, sludges and sediments. Particularly, in the case of As contamination, phytoextraction – which is the removal of toxic metals/metalloids from soil or whatever other environmental matrix and their concentration into the harvestable plant portion – appears quite useful (Khan, 2005). Microorganisms are known to play a very important role in this process. Actually, bacteria can enhance the mobility of arsenic in the soil matrix (eliciting the metalloid uptake by plants) while plant growth promoting rhizobacteria (PGPR) can improve plant biomass production (Abou- Shanab et al., 2003a; Glick et al., 1995; Glick, 2003). on the basis of obtained data it can be stated that:The high contamination due to arsenic and heavy metals present in the Nuova Solmine industrial area has determined a selection of the soil autochthonous bacterial cenoses towards a more tolerant and well adapted community, with wide biodiversity, resistance and As-transforming potential; • Most of the strains identified in the area with the highest pollutant concentrations (M, the arsenopyrite ash dumping pile) belonged to Gram positive Firmicutes and Actinobacteria, including strains possessing interesting genotypic traits involved in As transformation; • The isolates belonging to Delftia lacustris, and Pseudomonas putida specie reduced As(V) in vitro at high efficiency also showing the ability to solubilize arsenic in soils; • Among the members of the above mentioned bacterial community isolated in pure culture, strains belonging mainly to Gamma-proteobacteria were carrying particular PGP traits useful in a phytoremediation perspective based on bioaugmentation;Ochrobactrum cytisi, Pseudomonas putida and Achromobacter marplatensis were selected and tested for a microbe-enhanced phytoextraction experiment in association with the hyperaccumulator fern P. vittata. They exerted positive effects on both plant biomass production and total phytoextraction efficiency when compared with the not inoculated plants. However, all the plants – with or without bacterial inoculants – were able to extract an appreciable amount of As; however, where the inocula were present, ferns lowered As concentration in soil more effectively. The results of a second phytoextraction trial with another selection of As-resistant PGP strain (P. putida, Delftia lacustris, B. thuringiensis, Variovorax paradoxus, Pseudoxanthomonas mexicana) are coming. When completed, these preliminary evidences will allow either to evaluate the phytoextraction potential of the bacterial strains tested so far at lab scale or to schedule a future pilot trial at the Scarlino contaminated site. In conclusion an integrated system of plants and bacteria would be perfected as a reliable remediation tool to be applied in the Scarlino industrial area.
The interaction between rhizobacteria and the hyperaccumulator fern Pteris vittata in arsenic transformation
SANTI, Chiara
2013-01-01
Abstract
Arsenic is an ubiquitous element which occurs naturally in the earth's crust. Arsenic is toxic to both plants and animals and inorganic arsenicals are proven carcinogens in humans (Ng, 2005). Arsenic toxicity to human health ranges from skin lesions to brain, liver, kidney, and stomach cancer (Smith et al., 1992). Arsenic contamination of groundwater used for domestic supplies has been reported in over 70 countries, affecting health of an estimated 150 million people (Ravenscroft et al., 2009). Because of its wide distribution and marked toxic effects, arsenic contamination is a problem of global concern. Inorganic arsenic is indeed regarded as the number one toxin in the USEPA list of priority pollutants (Ng et al., 2003). In this respect, an interesting case study is that discussed in this PhD thesis focusing on the Scarlino area, a Site of Regional Interest (SRI) which requires prominent attention from the environmental point of view. The contamination in this context is the result of dumping of ash from arsenopyrite roasting for more than 30 years as a consequence of sulfuric acid production by the Nuova Solmine Company operating with industrial facilities in this site. Disposal of such ash in addition to the natural arsenic background has thus provoked either a serious soil contamination or a diffuse pollution of aquifers within the whole industrial district, where As can be detected in an average concentration of 140 mg/kg. An approach that might alleviate this problem is represented by the biotechnological option defined as microbe-enhanced phytoremediation. Phytoremediation is a low-cost and eco-friendly technology that uses vascular plants for in situ environmental restoration and reclamation of contaminated soils, sludges and sediments. Particularly, in the case of As contamination, phytoextraction – which is the removal of toxic metals/metalloids from soil or whatever other environmental matrix and their concentration into the harvestable plant portion – appears quite useful (Khan, 2005). Microorganisms are known to play a very important role in this process. Actually, bacteria can enhance the mobility of arsenic in the soil matrix (eliciting the metalloid uptake by plants) while plant growth promoting rhizobacteria (PGPR) can improve plant biomass production (Abou- Shanab et al., 2003a; Glick et al., 1995; Glick, 2003). on the basis of obtained data it can be stated that:The high contamination due to arsenic and heavy metals present in the Nuova Solmine industrial area has determined a selection of the soil autochthonous bacterial cenoses towards a more tolerant and well adapted community, with wide biodiversity, resistance and As-transforming potential; • Most of the strains identified in the area with the highest pollutant concentrations (M, the arsenopyrite ash dumping pile) belonged to Gram positive Firmicutes and Actinobacteria, including strains possessing interesting genotypic traits involved in As transformation; • The isolates belonging to Delftia lacustris, and Pseudomonas putida specie reduced As(V) in vitro at high efficiency also showing the ability to solubilize arsenic in soils; • Among the members of the above mentioned bacterial community isolated in pure culture, strains belonging mainly to Gamma-proteobacteria were carrying particular PGP traits useful in a phytoremediation perspective based on bioaugmentation;Ochrobactrum cytisi, Pseudomonas putida and Achromobacter marplatensis were selected and tested for a microbe-enhanced phytoextraction experiment in association with the hyperaccumulator fern P. vittata. They exerted positive effects on both plant biomass production and total phytoextraction efficiency when compared with the not inoculated plants. However, all the plants – with or without bacterial inoculants – were able to extract an appreciable amount of As; however, where the inocula were present, ferns lowered As concentration in soil more effectively. The results of a second phytoextraction trial with another selection of As-resistant PGP strain (P. putida, Delftia lacustris, B. thuringiensis, Variovorax paradoxus, Pseudoxanthomonas mexicana) are coming. When completed, these preliminary evidences will allow either to evaluate the phytoextraction potential of the bacterial strains tested so far at lab scale or to schedule a future pilot trial at the Scarlino contaminated site. In conclusion an integrated system of plants and bacteria would be perfected as a reliable remediation tool to be applied in the Scarlino industrial area.File | Dimensione | Formato | |
---|---|---|---|
PhD_Santi Chiara.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Dominio pubblico
Dimensione
3.46 MB
Formato
Adobe PDF
|
3.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.