Two-photon microscopy has been used to perform high spatial resolution imaging of spine plasticity in the intact neocortex of living mice. Multi-photon absorption has also been used as a tool for the selective disruption of cellular structures in living cells and simple organisms. In this work we exploit the spatial localization of multi-photon excitation to perform selective lesions on the neuronal processes of cortical neurons in living mice expressing fluorescent proteins. This methodology was applied to dissect single dendrites with sub-micrometric precision without causing any visible collateral damage to the surrounding neuronal structures. The spatial precision of this method was demonstrated by ablating individual dendritic spines, while sparing the adjacent spines and the structural integrity of the dendrite. The morphological consequences were then characterized with time lapse 3D two-photon imaging over a period of minutes to days after the procedure. Here we present the results of our systematic study of the morphological response of cortical pyramidal neurons to nanosurgical perturbations. Dendritic branches were followed after transecting distal segments, whilst the plasticity and remodeling of individual dendritic spines on a given branch was also followed after removing of a subset of spines.

In vivo multi-photon nanosurgery on cortical neurons: Focusing on network organization

BUFFELLI, Mario Rosario;
2008-01-01

Abstract

Two-photon microscopy has been used to perform high spatial resolution imaging of spine plasticity in the intact neocortex of living mice. Multi-photon absorption has also been used as a tool for the selective disruption of cellular structures in living cells and simple organisms. In this work we exploit the spatial localization of multi-photon excitation to perform selective lesions on the neuronal processes of cortical neurons in living mice expressing fluorescent proteins. This methodology was applied to dissect single dendrites with sub-micrometric precision without causing any visible collateral damage to the surrounding neuronal structures. The spatial precision of this method was demonstrated by ablating individual dendritic spines, while sparing the adjacent spines and the structural integrity of the dendrite. The morphological consequences were then characterized with time lapse 3D two-photon imaging over a period of minutes to days after the procedure. Here we present the results of our systematic study of the morphological response of cortical pyramidal neurons to nanosurgical perturbations. Dendritic branches were followed after transecting distal segments, whilst the plasticity and remodeling of individual dendritic spines on a given branch was also followed after removing of a subset of spines.
2008
9780819470355
Long term imaging; In vivo imaging; laser surgery; Laser dissection; laser ablation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/433606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact