Recentemente è stato dimostrato che la Stimolazione Magnetica Transcranica (TMS), applicata anche ad aree diverse da V1, può generare fosfeni. In particolare, sono stati riportati fosfeni in seguito alla stimolazione del Solco Intraparietale (IPS). Tuttavia, non è stato ancora chiarito se i fosfeni parietali siano generati direttamente dalla corteccia parietale indipendentemente dal contributo delle aree occipitali. In primo luogo, è stato svolto un esperimento per confrontare i più comuni metodi di misurazione della soglia di detezione dei fosfeni, dato che la stessa rappresenta il cuore del mio progetto di dottorato. Nello specifico, sono stati misurati il metodo degli stimoli costanti (MOCS), il “Modify Binary Search” (MOBS), ed il “Rapid Estimation of Phosphene Threshold” (REPT) in 17 partecipanti. I dati ottenuti suggeriscono che il MOCS sia il metodo più stabile da utilizzare nei successivi esperimenti: nonostante la sua lunghezza è risultato essere consistente nelle somministrazioni consecutive riportando soglie invariate indipendentemente dal numero di somministrazioni. Il MOBS è risultato invece altamente variabile, mentre il REPT è meno affidabile del MOCS, rimanendo comunque affidabile indipendente dal numero di somministrazioni. Il secondo esperimento si proponeva di descrivere sistematicamente le caratteristiche dei fosfeni parietali in modo da trovare eventuali differenze con i fosfeni classicamente evocati in occipitale in termini di soglia di detezione, eccentricità, grandezza, vividezza e luminosità. I siti di stimolazione sono stati identificati funzionalmente attorno a P3 e O1 e il metodo degli stimoli costanti è stato utilizzato per determinare la soglia dei fosfeni. Ai soggetti è stato anche richiesto di disegnare i fosfeni alla fine della procedura di soglia per determinare eccentricità e grandezza e di stimare vividezza e luminosità delle percezioni evocate. I risultati hanno mostrato una soglia più alta per i fosfeni in parietale (72.4%) rispetto a quelli evocati da stimolazione occipitale (63.1%). Inoltre, le due curve psicofisiche dei due tipi di fosfeni hanno mostrano una diversa forma riportando valori che correlano solo al 50% delle rispettive curve. Luminosità ed eccentricità sono poi risultate essere modulate dal sito di stimolazione, ottenendo rispettivamente, in seguito a stimolazione parietale, fosfeni meno luminosi (e più difficili da percepire) e stabili nella posizione indipendentemente dall’intensità di stimolazione, contrariamente a quanto avviene con i fosfeni in occipitale. Questo dato è probabilmente dovuto ad una peggiore organizzazione retinotopica dello spazio nella regione del solco intraparietale. Dato che l’attivazione di V1 è ritenuta necessaria nella percezione di fosfeni, la possibilità che V1 sia implicata nei fosfeni parietali non può essere totalmente rifiutata con i dati del secondo esperimento. Pertanto, è stata testata una paziente affetta da emianopsia omonima, la cui area visiva primaria danneggiata non mostrava alcuna attività rimanente, per indagare il ruolo del solco intraparietale nell’esperienza visiva cosciente. La paziente ha riportato fosfeni del tutto simili a quelli evocati nell’emisfero sano in seguito a stimolazione parietale dell’emisfero ipsilaterale la lesione occipitale. Inoltre la soglia riportata non è risultata differente da quella ottenuta nel lobo parietale sui soggetti sani. Infine, lo scopo dell’ultimo esperimento era di identificare il network corticale attivato nell’induzione di fosfeni da lobo parietale. In particolare la percezione dei fosfeni parietali è stata esplorata usando la combinazione simultanea di due diverse tecniche: TMS e fast optical imaging (event-related optical signal – EROS), capace di offrire una buona risoluzione spaziale unita ad un’ottima capacità di risoluzione temporale. I dati preliminari ottenuti da cinque partecipanti hanno rivelato pattern di attivazione diversi in base alla presenza o assenza di percezione del fosfene. Tuttavia, poiché molte delle attivazioni evidenziate sono di segno negativo, questi dati risultano di non facile interpretazione e trarre conclusioni certe risulta impossibile prima di un allargamento del campione. Concludendo, questi risultati, valutati insieme a precedenti evidenze sperimentali, sostengono l’ipotesi di un lobo parietale capace di generare esperienze visive coscienti, indipendentemente dalle aree visive primarie, e andando dunque contro le teorie che teorizzano che V1 sia necessaria per la consapevolezza visiva (Tong, 2003).
It has recently been shown that TMS applied to visually responsive areas other than V1 can generate light sensations, called “phosphenes”, in absence of visual stimulation in the environment. In particular, contralateral phosphenes have been obtained by stimulating the intraparietal sulcus. However, a question that still remains open is whether parietal phosphenes are generated by the parietal cortex, independently from the contribution of occipital areas. Since the phosphene threshold represented the heart of my project, a preliminary experiment comparing the most common thresholding methods was carried out in order to assess which methods was the most reliable. We thus tested the “method of constant stimuli” (MOCS), the “Modify Binary Search” (MOBS) and the “Rapid Estimation of Phosphene Threshold” (REPT) in seventeen participants. Each of the three methods was repeated three times per participant in the same week. The data suggested using MOCS in the next experiments because, despite its length, it resulted to be consistent across days, with thresholds not changing depending on the number of administrations. On the other hand, MOBS appeared highly variable, while REPT tended to be less reliable than MOCS but still remaining unaffected by the number of administrations. The aim of the second experiment was to provide a characterization of parietal phosphenes to find possible differences in terms of phosphene threshold, eccentricity, size, vividness and brightness with those evoked by stimulation of the occipital cortex. Single-pulse magnetic stimulations were administered with a figure-of-eight coil, assisted by a neuronavigational system. Individual stimulation sites were functionally identified around P3 and O1 (10-20 system). To determine phosphene threshold the “method of constant stimuli” was used: randomly intermixed intensities were employed (ranging from 45% to 90%) and twenty stimulations were given for each output intensity. Subjects were also requested to draw the phosphenes as to obtain eccentricity and size and to rate vividness and brightness of evoked perceptions. Fourteen subjects participated in the study. Results showed that the threshold was reliably lower for occipital lobe (63.1% of maximum stimulator output, MSO) than for parietal lobe (72.4% MSO) TMS stimulation and that the two psychophysical curves had a significantly different shape, with correlating values only at the 50% threshold. In addition, brightness and eccentricity were modulated by the site of stimulation, respectively obtaining less bright phosphenes (and thus more difficult to perceive) following parietal stimulation and no changes in the location of parietal phosphenes by changing the intensity of stimulation, contrary to what happened for the occipital phosphenes. This was probably due to the coarser retinotopic organization of space within the parietal cortex. Given that the activation of V1 is generally thought to be involved in conscious perception of phosphenes, the possibility that V1 was implicated in parietal phosphenes could not be totally dismissed with the second experiment. Therefore, a hemianopic patient, who showed no residual activity in her left V1, was tested to further investigate the role of intraparietal sulcus in visual conscious experience. She crucially reported parietal phosphenes (broadly similar to those evoked in the intact hemisphere and in sighted individuals) when TMS was applied over the damaged hemisphere (P3), in absence of V1. Additionally, her threshold values were not very different from those of healthy participants. Finally, we sought to identify the cortical neural network activated while inducing phosphenes with parietal TMS. In particular, parietal phosphene perception was explored using a simultaneous combination of TMS and a fast optical imaging tool (event-related optical signal – EROS), which offer a good spatial resolution in conjunction with the ability to map out the time course of feed-forward and feedback processes. The phosphene threshold value was employed to compare phosphene awareness to no phosphene awareness under identical stimulation parameters and to investigate which regions critically determined the parietal phosphene perception. Preliminary data from five participants seemed to reveal different activation patterns depending on the presence/absence of phosphenes but, since a lot of negative activations were highlighted, these data were not easy to be interpreted, as often happens with fMRI data. Therefore, the current sample needs to be enlarged and more data to be collected before any serious inferences can be drawn. In sum, these findings, along with previous evidence, corroborated the hypothesis that the parietal lobe is able to generate conscious visual experience, independently from early visual areas, and that parietal phosphenes may have a different neural basis from those elicited in occipital lobe. Such a result, therefore, goes against theories suggesting that primary visual area is necessary for awareness (Tong, 2003).
The causal role of the intraparietal sulcus (IPS) in visual conscious experience. A TMS investigation.
MAZZI, Chiara
2012-01-01
Abstract
It has recently been shown that TMS applied to visually responsive areas other than V1 can generate light sensations, called “phosphenes”, in absence of visual stimulation in the environment. In particular, contralateral phosphenes have been obtained by stimulating the intraparietal sulcus. However, a question that still remains open is whether parietal phosphenes are generated by the parietal cortex, independently from the contribution of occipital areas. Since the phosphene threshold represented the heart of my project, a preliminary experiment comparing the most common thresholding methods was carried out in order to assess which methods was the most reliable. We thus tested the “method of constant stimuli” (MOCS), the “Modify Binary Search” (MOBS) and the “Rapid Estimation of Phosphene Threshold” (REPT) in seventeen participants. Each of the three methods was repeated three times per participant in the same week. The data suggested using MOCS in the next experiments because, despite its length, it resulted to be consistent across days, with thresholds not changing depending on the number of administrations. On the other hand, MOBS appeared highly variable, while REPT tended to be less reliable than MOCS but still remaining unaffected by the number of administrations. The aim of the second experiment was to provide a characterization of parietal phosphenes to find possible differences in terms of phosphene threshold, eccentricity, size, vividness and brightness with those evoked by stimulation of the occipital cortex. Single-pulse magnetic stimulations were administered with a figure-of-eight coil, assisted by a neuronavigational system. Individual stimulation sites were functionally identified around P3 and O1 (10-20 system). To determine phosphene threshold the “method of constant stimuli” was used: randomly intermixed intensities were employed (ranging from 45% to 90%) and twenty stimulations were given for each output intensity. Subjects were also requested to draw the phosphenes as to obtain eccentricity and size and to rate vividness and brightness of evoked perceptions. Fourteen subjects participated in the study. Results showed that the threshold was reliably lower for occipital lobe (63.1% of maximum stimulator output, MSO) than for parietal lobe (72.4% MSO) TMS stimulation and that the two psychophysical curves had a significantly different shape, with correlating values only at the 50% threshold. In addition, brightness and eccentricity were modulated by the site of stimulation, respectively obtaining less bright phosphenes (and thus more difficult to perceive) following parietal stimulation and no changes in the location of parietal phosphenes by changing the intensity of stimulation, contrary to what happened for the occipital phosphenes. This was probably due to the coarser retinotopic organization of space within the parietal cortex. Given that the activation of V1 is generally thought to be involved in conscious perception of phosphenes, the possibility that V1 was implicated in parietal phosphenes could not be totally dismissed with the second experiment. Therefore, a hemianopic patient, who showed no residual activity in her left V1, was tested to further investigate the role of intraparietal sulcus in visual conscious experience. She crucially reported parietal phosphenes (broadly similar to those evoked in the intact hemisphere and in sighted individuals) when TMS was applied over the damaged hemisphere (P3), in absence of V1. Additionally, her threshold values were not very different from those of healthy participants. Finally, we sought to identify the cortical neural network activated while inducing phosphenes with parietal TMS. In particular, parietal phosphene perception was explored using a simultaneous combination of TMS and a fast optical imaging tool (event-related optical signal – EROS), which offer a good spatial resolution in conjunction with the ability to map out the time course of feed-forward and feedback processes. The phosphene threshold value was employed to compare phosphene awareness to no phosphene awareness under identical stimulation parameters and to investigate which regions critically determined the parietal phosphene perception. Preliminary data from five participants seemed to reveal different activation patterns depending on the presence/absence of phosphenes but, since a lot of negative activations were highlighted, these data were not easy to be interpreted, as often happens with fMRI data. Therefore, the current sample needs to be enlarged and more data to be collected before any serious inferences can be drawn. In sum, these findings, along with previous evidence, corroborated the hypothesis that the parietal lobe is able to generate conscious visual experience, independently from early visual areas, and that parietal phosphenes may have a different neural basis from those elicited in occipital lobe. Such a result, therefore, goes against theories suggesting that primary visual area is necessary for awareness (Tong, 2003).File | Dimensione | Formato | |
---|---|---|---|
tesi def.pdf
non disponibili
Tipologia:
Tesi di dottorato
Licenza:
Accesso ristretto
Dimensione
8.01 MB
Formato
Adobe PDF
|
8.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.