Le tecniche di coregistrazione elettroencefalogramma-risonanza magnetica funzionale (EEG-fMRI) ed EEG ad alta densità (hdEEG) consentono di mappare attivazioni cerebrali anomale evocate da processi epilettici. L’EEG-fMRI è una tecnica di imaging non invasivo che permette la localizzazione delle variazioni del livello di ossigenazione nel sangue presente nelle regioni irritative (segnale BOLD). Diversamente, l’analisi di sorgente stima, a partire da un potenziale elettrico misurato sullo scalpo (EEG), la densità di corrente della sorgente elettrica a livello corticale producendo una plausibile localizzazione del dipolo nelle regioni irritative. Lo scopo di questa tesi è quello di sviluppare un approccio multimodale attraverso l’uso di dati di coregistrazione EEG-fMRI e hdEEG al fine di localizzare l’attività epilettica e verificare l’affidabilità sia dell’attivazione BOLD che della localizzazione della sorgente. Nel Capitolo I si introduce il concetto di approccio multimodale. Il capitolo è suddiviso principalmente in due parti: la prima descrive la tecnica di coregistrazione EEG-fMRI e la seconda la tecnica di localizzazione della sorgente in epilessia. La prima parte consiste in una breve analisi delle basi fisiologiche del dato di coregistrazione EEG-fMRI, nella descrizione di tecniche di registrazione simultanea e nell’introduzione del metodo convenzionale di analisi dei dati. Sono inoltre descritti problemi tecnici, problemi di sicurezza, modalità di scansione e strategie di rimozione degli artefatti EEG. È quindi presentata una panoramica sullo stato dell’arte delle coregistrazioni EEG-fMRI con discussione dei problemi aperti riguardanti l’analisi convenzionale. La seconda parte introduce i principi di base della stima delle sorgenti da dati hdEEG ed i loro limiti. Il primo capitolo fornisce un quadro generale, mentre i due capitoli successivi sono dedicati ad introdurre approcci di tipo diverso. Nell’analisi convenzionale di dati EEG-fMRI, l’apparizione di eventi interictali (IED) guida l’analisi dei dati fMRI. Il neurologo identifica gli intervalli degli eventi IED, che sono rappresentati da un’onda quadra, e successivamente questo protocollo viene convoluto con una risposta emodinamica (HRF) canonica per la costruzione di un modello o regressore da impiegare nell’analisi con modelli lineari generalizzati (GLM). I problemi principali dell’analisi convenzionale consistono nel fatto che essa non è automatica, ossia soffre di soggettività nella classificazione degli IED, e che, se la scelta dell’HRF non è ottimale, l’attivazione può essere sovra o sotto stimata. Il nuovo metodo proposto integra nell’analisi GLM convenzionale due nuove funzioni: il regressore basato sul segnale EEG (Capitolo II), e l’individuazione di una risposta emodinamica individual-based (ibHRF) (Capitolo III). Nel Capitolo IV le prestazioni del nuovo metodo per l’analisi di dati EEG-fMRI sono validate su dati in silico. A questo scopo sono stati creati dati fMRI simulati per testare la scelta dell’HRF ottima tra cinque modelli: quattro standard ed un modello HRF individual-based. Le prestazioni del metodo sono state valutate utilizzando come selezione il criterio di Akaike. Le simulazioni dimostrano la superiorità del nuovo metodo rispetto a quelli convenzionali e mostrano come la variazione del modello HRF influisce sui risultati dell’analisi statistica. Il Capitolo V introduce un criterio automatico volto a separare le componenti del segnale fMRI relative a network interni dal rumore. Dopo il processo di decomposizione probabilistico delle componenti indipendenti (PICA), si seleziona il numero ottimale di componenti applicando un nuovo algoritmo che tiene conto, per ciascuna componente, dei valori medi delle mappe spaziali di attivazione seguito da passaggi di clustering, segmentazione ed analisi spettrale. Confrontando i risultati dell’identificazione visiva dei network neuronali con i risultati di quella automatica, l’algoritmo mostra elevata accuratezza e precisione. In questo modo, il metodo di selezione automatica permette di separare ed individuare i network in stato di riposo, riducendo la soggettività nella valutazione delle componenti indipendenti. Nel Capitolo VI sono descritti il design sperimentale e l’analisi dei dati reali. Il capitolo illustra i risultati di dodici pazienti epilettici, concentrandosi sull’attività BOLD, sulla localizzazione della sorgente e sulla concordanza con il quadro clinico del paziente. Lo scopo è quello di applicare un approccio multimodale che combini tecniche non invasive di acquisizione ed analisi. Sequenze di EEG standard e fMRI sono acquisite nel corso della stessa sessione di scansione. L’analisi dei dati EEG-fMRI è eseguita utilizzando l’approccio GLM tradizionale, il nuovo approccio e l’analisi PICA. La sorgente dell’attività epilettica è stimata a partire da tracciati EEG a 256-canali. L’attivazione BOLD è confrontata con la ricostruzione della sorgente EEG. Questi risultati sono infine confrontati con l’attività epilettica definita da EEG standard ed esiti clinici. La combinazione di tecniche multimodali ed i loro rispettivi metodi di analisi sono strumenti utili per creare un workup prechirurgico completo dell’epilessia, fornendo diversi metodi di localizzazione dello stesso focolaio epilettico. L’approccio non invasivo di integrazione multimodale di dati EEG-fMRI e hdEEG sembra essere uno strumento molto promettente per lo studio delle scariche epilettiche.

Electroencephalography-functional magnetic resonance imaging (EEG-fMRI) coregistration and high density EEG (hdEEG) can be combined to noninvasively map abnormal brain activation elicited by epileptic processes. EEG-fMRI can provide information on the pathophysiological processes underlying interictal activity, since the hemodynamic changes are a consequence of the abnormal neural activity generating interictal epileptiform discharges (IEDs). The source analysis estimates the current density of the source that generates a measured electric potential and it yields a plausible dipole localization of irritative regions. The aim of this thesis is to develop a multimodal approach with hdEEG and EEG-fMRI coregistration in order to localize the epileptic activity and to verify the reliability of source localization and BOLD activation. In Chapter I the multimodal approach is introduced. The chapter is divided in two main parts: the first is based on EEG-fMRI coregistration and the second on the source localization in epilepsy. The first part consists of a brief review of the physiologic basis of EEG and fMRI and the technical basics of simultaneous recording, examining the conventional method for EEG-fMRI data. Technical challenges, safety issues, scanning modalities and EEG artifact removal strategies are also described. An overview of the state of EEG-fMRI is presented and the open problems of conventional analysis are discussed. The second part introduces the basic principles of the source estimation from EEG data in epilepsy and their limitations. The first chapter provides a general framework. The next two are devoted to introduce different approaches. Conventional analysis of EEG-fMRI data relies on spike-timing of epileptic activity: the neurologist identifies the intervals of the IEDs events, as represented by a square wave; this protocol is then convolved with a canonical hemodynamic response function (HRF) to construct a model for the general linear model (GLM) analysis. There are limitations to the technique, however. The conventional analysis is not automatic, suffers of subjectivity in IEDs classification, and using a suboptimal HRF to model the BOLD response the activation map may result over or under estimated. The novel method purposed integrates in the conventional GLM two new features: the regressor based on the EEG signal (Chapter II) and the individual-based hemodynamic response function (ibHRF) (Chapter III). In Chapter IV the performance of the novel method of EEG-fMRI data was tested on in silico data. Simulated fMRI datasets were created and used for the choice of the optimal HRF among five models: four standard and an individual-based HRF models. The performance of the method was evaluated using the Akaike information criterion as selection. Simulations would demonstrate the superiority of the novel method compared with the conventional ones and assess how the variations in HRF model affect the results of the statistical analysis. Chapter V introduces an automatic criterion aiming to separate in fMRI data the signal related to an internal network from the noise. After the decomposition process (probabilistic independent component analysis [PICA]), the optimal number of components was selected by applying a novel algorithm which takes into account, for each component, the mean values of the spatial activation maps followed by clustering, segmentation and spectral analysis steps. Comparing visual and automatic identification of the neuronal networks, the algorithm demonstrated high accuracy and precision. Thus, the automatic selection method allows to separate and detect the resting state networks reducing the subjectivity of the independent component assessment. In Chapter VI experimental design and analysis on real data are described. The chapter focuses on BOLD activity, source localization and agreement with the clinical history of twelve epileptic patients. The scope is to apply a multimodal approach combining noninvasive techniques of acquisition and analysis. Standard EEG and fMRI data were acquired during a single scanning session. The analysis of EEG-fMRI data was performed by using both the conventional GLM, the new GLM and the PICA. Source localization of IEDs was performed using 256-channels hdEEG. BOLD localizations were then compared to the EEG source reconstruction and to the expected epileptic activity defined by standard EEG and clinical outcome. The combination of multimodal techniques and their respectively methods of analysis are useful tools in the presurgical workup of epilepsy providing different methods of localization of the same epileptic foci. Furthermore, the combined use of EEG-fMRI and hdEEG offers a new and more complete approach to the study of epilepsy and may play an increasingly important role in the evaluation of patients with refractory focal epilepsy.

A multimodal imaging approach for quantitative assessment of epilepsy

STORTI, Silvia Francesca
2012

Abstract

Le tecniche di coregistrazione elettroencefalogramma-risonanza magnetica funzionale (EEG-fMRI) ed EEG ad alta densità (hdEEG) consentono di mappare attivazioni cerebrali anomale evocate da processi epilettici. L’EEG-fMRI è una tecnica di imaging non invasivo che permette la localizzazione delle variazioni del livello di ossigenazione nel sangue presente nelle regioni irritative (segnale BOLD). Diversamente, l’analisi di sorgente stima, a partire da un potenziale elettrico misurato sullo scalpo (EEG), la densità di corrente della sorgente elettrica a livello corticale producendo una plausibile localizzazione del dipolo nelle regioni irritative. Lo scopo di questa tesi è quello di sviluppare un approccio multimodale attraverso l’uso di dati di coregistrazione EEG-fMRI e hdEEG al fine di localizzare l’attività epilettica e verificare l’affidabilità sia dell’attivazione BOLD che della localizzazione della sorgente. Nel Capitolo I si introduce il concetto di approccio multimodale. Il capitolo è suddiviso principalmente in due parti: la prima descrive la tecnica di coregistrazione EEG-fMRI e la seconda la tecnica di localizzazione della sorgente in epilessia. La prima parte consiste in una breve analisi delle basi fisiologiche del dato di coregistrazione EEG-fMRI, nella descrizione di tecniche di registrazione simultanea e nell’introduzione del metodo convenzionale di analisi dei dati. Sono inoltre descritti problemi tecnici, problemi di sicurezza, modalità di scansione e strategie di rimozione degli artefatti EEG. È quindi presentata una panoramica sullo stato dell’arte delle coregistrazioni EEG-fMRI con discussione dei problemi aperti riguardanti l’analisi convenzionale. La seconda parte introduce i principi di base della stima delle sorgenti da dati hdEEG ed i loro limiti. Il primo capitolo fornisce un quadro generale, mentre i due capitoli successivi sono dedicati ad introdurre approcci di tipo diverso. Nell’analisi convenzionale di dati EEG-fMRI, l’apparizione di eventi interictali (IED) guida l’analisi dei dati fMRI. Il neurologo identifica gli intervalli degli eventi IED, che sono rappresentati da un’onda quadra, e successivamente questo protocollo viene convoluto con una risposta emodinamica (HRF) canonica per la costruzione di un modello o regressore da impiegare nell’analisi con modelli lineari generalizzati (GLM). I problemi principali dell’analisi convenzionale consistono nel fatto che essa non è automatica, ossia soffre di soggettività nella classificazione degli IED, e che, se la scelta dell’HRF non è ottimale, l’attivazione può essere sovra o sotto stimata. Il nuovo metodo proposto integra nell’analisi GLM convenzionale due nuove funzioni: il regressore basato sul segnale EEG (Capitolo II), e l’individuazione di una risposta emodinamica individual-based (ibHRF) (Capitolo III). Nel Capitolo IV le prestazioni del nuovo metodo per l’analisi di dati EEG-fMRI sono validate su dati in silico. A questo scopo sono stati creati dati fMRI simulati per testare la scelta dell’HRF ottima tra cinque modelli: quattro standard ed un modello HRF individual-based. Le prestazioni del metodo sono state valutate utilizzando come selezione il criterio di Akaike. Le simulazioni dimostrano la superiorità del nuovo metodo rispetto a quelli convenzionali e mostrano come la variazione del modello HRF influisce sui risultati dell’analisi statistica. Il Capitolo V introduce un criterio automatico volto a separare le componenti del segnale fMRI relative a network interni dal rumore. Dopo il processo di decomposizione probabilistico delle componenti indipendenti (PICA), si seleziona il numero ottimale di componenti applicando un nuovo algoritmo che tiene conto, per ciascuna componente, dei valori medi delle mappe spaziali di attivazione seguito da passaggi di clustering, segmentazione ed analisi spettrale. Confrontando i risultati dell’identificazione visiva dei network neuronali con i risultati di quella automatica, l’algoritmo mostra elevata accuratezza e precisione. In questo modo, il metodo di selezione automatica permette di separare ed individuare i network in stato di riposo, riducendo la soggettività nella valutazione delle componenti indipendenti. Nel Capitolo VI sono descritti il design sperimentale e l’analisi dei dati reali. Il capitolo illustra i risultati di dodici pazienti epilettici, concentrandosi sull’attività BOLD, sulla localizzazione della sorgente e sulla concordanza con il quadro clinico del paziente. Lo scopo è quello di applicare un approccio multimodale che combini tecniche non invasive di acquisizione ed analisi. Sequenze di EEG standard e fMRI sono acquisite nel corso della stessa sessione di scansione. L’analisi dei dati EEG-fMRI è eseguita utilizzando l’approccio GLM tradizionale, il nuovo approccio e l’analisi PICA. La sorgente dell’attività epilettica è stimata a partire da tracciati EEG a 256-canali. L’attivazione BOLD è confrontata con la ricostruzione della sorgente EEG. Questi risultati sono infine confrontati con l’attività epilettica definita da EEG standard ed esiti clinici. La combinazione di tecniche multimodali ed i loro rispettivi metodi di analisi sono strumenti utili per creare un workup prechirurgico completo dell’epilessia, fornendo diversi metodi di localizzazione dello stesso focolaio epilettico. L’approccio non invasivo di integrazione multimodale di dati EEG-fMRI e hdEEG sembra essere uno strumento molto promettente per lo studio delle scariche epilettiche.
electroencephalography; functional magnetic resonance imaging; source localization; epilepsy
File in questo prodotto:
File Dimensione Formato  
PhDThesis_SFStorti.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Dominio pubblico
Dimensione 9.22 MB
Formato Adobe PDF
9.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11562/398335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact